ROCKWOOL®
FIREPRO®

Comprehensive range of passive fire protection products and solutions
Contents

Introducing ROCKWOOL® FIREPRO®

Fire stopping

<table>
<thead>
<tr>
<th>Section 1 - Penetration seals / Core products</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIREPRO® 50mm Ablative Coated Batt</td>
<td>6</td>
</tr>
<tr>
<td>FIREPRO® 60mm Ablative Coated Batt</td>
<td>8</td>
</tr>
<tr>
<td>FIREPRO® Ablative Coating</td>
<td>12</td>
</tr>
<tr>
<td>FIREPRO® Firestop Compound</td>
<td>16</td>
</tr>
<tr>
<td>FIREPRO® High Strength Firestop Compound</td>
<td>18</td>
</tr>
<tr>
<td>FIREPRO® Intumescent Pillows CE</td>
<td>22</td>
</tr>
<tr>
<td>FIREPRO® Multi-Cable Firestop</td>
<td>28</td>
</tr>
<tr>
<td>FIREPRO® Intumescent Putty Pads</td>
<td>34</td>
</tr>
<tr>
<td>FIREPRO® Firestop Pipe Collars CE</td>
<td>38</td>
</tr>
<tr>
<td>FIREPRO® Intumescent Pipe Wraps CE</td>
<td>42</td>
</tr>
<tr>
<td>FIREPRO® Insulated Fire Sleeves</td>
<td>50</td>
</tr>
<tr>
<td>FIREPRO® Intumescent Pipe Wrap Roll</td>
<td>56</td>
</tr>
<tr>
<td>FIREPRO® High Expansion Intumescent Sealant</td>
<td>60</td>
</tr>
<tr>
<td>FIREPRO® Speedseal</td>
<td>66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 2 - Cavity barriers & cavity firestops / Core products</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Barrier System</td>
<td>74</td>
</tr>
<tr>
<td>Fire Barrier Slab</td>
<td>76</td>
</tr>
<tr>
<td>TCB & PWCB Cavity Barriers</td>
<td>92</td>
</tr>
<tr>
<td>FIREPRO® SP Firestop System</td>
<td>96</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 3 - Linear joint seals / Core products</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIREPRO® SoftSeal System</td>
<td>108</td>
</tr>
<tr>
<td>FIREPRO® Linear & Trapezoidal Firestops</td>
<td>110</td>
</tr>
<tr>
<td>FIREPRO® Intumescent Expansion Joint Seal</td>
<td>116</td>
</tr>
<tr>
<td>FIREPRO® Acoustic Intumescent Sealant</td>
<td>122</td>
</tr>
<tr>
<td>FIREPRO® Fire Resistant Silicone Sealant</td>
<td>126</td>
</tr>
<tr>
<td>SP Firestop OSCB</td>
<td>132</td>
</tr>
</tbody>
</table>

Fire protection

<table>
<thead>
<tr>
<th>Section 1 - Structural steel / concrete / Core products</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soffit Slab</td>
<td>142</td>
</tr>
<tr>
<td>FIREPRO® Glue</td>
<td>144</td>
</tr>
<tr>
<td>FIREPRO® BEAMCLAD® Systems</td>
<td>148</td>
</tr>
<tr>
<td>FIREPRO® BEAMCLAD® Fixing Guide</td>
<td>152</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section 2 - Building services / Core products</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire Duct Systems</td>
<td>174</td>
</tr>
<tr>
<td>RockLap H&V Pipe Sections</td>
<td>176</td>
</tr>
<tr>
<td>FIREPRO® DuctRock</td>
<td>188</td>
</tr>
<tr>
<td>FIREPRO® Fire Tube</td>
<td>196</td>
</tr>
<tr>
<td>FIREPRO® Fire Tube</td>
<td>208</td>
</tr>
</tbody>
</table>

ROCKWOOL® Firestopping Principles | 212 |
Other information | 214 |
Legal disclaimer | 215 |
Passive fire protection is a critical component of any fire safety strategy. Usually unseen but always at work, passive fire protection systems are built into the structure of the building to safeguard the lives of the building occupants. When properly installed, passive fire protection measures will protect the building’s structure and limit the spread of fire and smoke by containing it within the compartment.

The ROCKWOOL® FIREPRO® range of passive fire protection products provides firestopping and fire resistance throughout the building’s construction, ensuring the building and its occupants are safer in the event of a fire. Our specialist range of products support architects, contractors and developers to conform to current building regulations.

In the ROCKWOOL® FIREPRO® Book you can find products for a range of specialist passive fire protection applications which include:

- Cavity barriers
- Structural protection
- Cavity firestops
- Linear joint seals
- Penetration seals
- Building services protection

The ROCKWOOL® FIREPRO® Book is a comprehensive catalogue of tested and certified passive fire protection solutions.
Modern buildings include a vast array of building services which when installed, often pass through fire resistant compartment elements. It is also important to consider that buildings are subject to change, and that many building services can be added throughout its lifetime.

It is vitally important that breaches applied to compartment walls and floors by services are appropriately sealed to prevent the passage of fire and smoke. When sealing penetrations through compartment walls and floors, it essential that approved and tested products are used to re-establish the fire resistance of the compartment.

ROCKWOOL® Firestopping solutions include a wide range of 3rd party-approved products that have been developed to seal apertures made within compartment walls and floors. Within our range of penetration seals, we have products that have been designed for use with specific types of building services including:

- Combustible pipes
- Metal pipes
- Cables, cable trays & conduits
- Fire dampers
- Duct work
- Electrical sockets

ROCKWOOL® Firestopping solutions include a wide range of 3rd party-approved products that have been developed to seal apertures made within compartment walls and floors. Within our range of penetration seals, we have products that have been designed for use with specific types of building services including:

- Combustible pipes
- Metal pipes
- Cables, cable trays & conduits
- Fire dampers
- Duct work
- Electrical sockets

Useful documents and standards

- ASPF Red Book: Fire stopping and penetration seals for the construction industry
- ASPF: Ensuring best practice for passive fire protection in buildings
- ASPF: On-site guide to installing fire stopping
- ROCKWOOL® Firestopping Standard Details
- BS 476-20: Fire test on building materials and structures. Method for determination of the fire resistance of elements of construction
- BS EN 1366-3: Fire resistance test for service installations. Penetration Seals
- BS EN 1366-1: Fire resistance tests. General Requirements
- BS EN 13501-2: Fire classification of construction products and building elements. Classification using test data from resistance to fire tests, excluding ventilation services.
- ROCKWOOL guidance - HVAC specification detail guide
FIREPRO® 50mm Ablative Coated Batt

Advantages
- Excellent fire resistance from a single thickness batt
- Comprehensively tested as part of the FIREPRO® suite of solutions
- Suitable for sealing wall and floor voids containing most commonly used services and substrates
- Can be used as a blank seal and a head of wall seal
- Lightweight and simple to install
- Tested for air tightness, providing an additional smoke and acoustic seal

Description
The ROCKWOOL Ablative Coated Batt comprises a high density stone wool core, pre-coated on both sides with our high-performance ablative coating. Ablative Coated Batt has been comprehensively tested as part of the ROCKWOOL FIREPRO® range of fire protection products, specifically for use in service penetrations, head of wall and other void seals.

Applications
- Multiple substrates including: solid walls and floors; flexible walls
- Multi-service penetrations
- Head of wall
- Blank seals
- Face-fixed applications
- Large-framed service voids

For a fully comprehensive list of applications, please refer to the appropriate ROCKWOOL standard details available at www.rockwool.co.uk or contact the ROCKWOOL Technical Solutions Team.

Performance

Fire performance
Tests have proved the capability of a single 50mm Batt to provide up to 2 hours fire resistance. Integrity and Insulation ratings are dependent upon the service penetrations and void size. Where 4 hours integrity and insulation are required, we recommend the use of our 60mm Ablative Coated Batt.

Acoustic performance
- Tested for head of wall:
 - $R_w= \text{up to } 48\text{dBA} (2 \times \text{Coated batts})$
 - $R_w= \text{up to } 37\text{dBA} (1 \times \text{Coated batts})$

 The correct use of Coated batt within concealed cavities and voids will reduce the level of transmitted sound:
 - $R_w= \text{up to } 52\text{dBA} (2 \times \text{Coated batts})$ - incorporating 48mm O/D PVC /15mm copper pipe penetrations.
 - $R_w= \text{up to } 34\text{dBA} (1\times \text{Coated batts})$ - incorporating 48mm O/D PVC /15mm copper pipe penetrations.

 For specific acoustic requirements please contact ROCKWOOL Technical Solutions.

Standard and approvals
BS EN 1366-3: 2009 and the dedicated fire resistance standard for linear joint seals, BS EN 1366-4:2006. Ablative Coated Batt has been classified in accordance with BS EN 13501-2.

Third party accreditation through IFC and Certifire.
CE marked to ETAG 26-02

For further information on the full scope of fire performance please refer to the appropriate standard details available at www.rockwool.co.uk or contact ROCKWOOL Technical Solutions.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1200mm</td>
</tr>
<tr>
<td>Width</td>
<td>600mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>50mm</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 2 hours</td>
</tr>
<tr>
<td>Density</td>
<td>160kg/m³</td>
</tr>
<tr>
<td>Air leakage</td>
<td>0.8m³/h/m²</td>
</tr>
</tbody>
</table>

Note: All Ablative Coated Batt fire resistance tests were conducted using ROCKWOOL FIREPRO® ancillary products as appropriate.
Installations

1. Make sure that the area within the aperture is clean of any debris and remove any dust from the edges.
2. Cut ROCKWOOL Ablative Coated Batt to the size and shape required to fit the aperture ensuring that batt will make a tight fit with all edges of the aperture.
3. Cut rectangular holes from the coated batt to accommodate cable trays or ladders containing cables.
4. Cut the Coated Batt across its width at the mid-point of each rectangular hole to enable the Batt to be fitted into the aperture.
5. Apply ROCKWOOL Acoustic Intumescent Sealant to all edges of the Batt ensuring that an even cover is achieved over the entire thickness of the Batt. This should include the outer edges of the Batt and the edges of the cuts made across the Batt to allow fitting into the aperture.
6. Insert the Batt into the aperture.
7. Apply a bead of ROCKWOOL Acoustic Intumescent Sealant approximately 15mm wide around the perimeter of the Batt ensuring that all gaps between the Batt and surrounding edges are fully filled.
8. Apply a bead of ROCKWOOL Acoustic Intumescent Sealant approximately 15mm wide where cables pass through the Batt. Ensure that the sealant fully enclosed each cable within the tray or ladder and that all gaps are fully filled.
9. Repeat step 7 and 8 on the other side of the Batt.

Other installation information

FIREPRO® Ablative Coated Batts are not intended for use as load-bearing seals. Where a load-bearing seal is required, ROCKWOOL Firestop Compound should be considered.

Specification clauses

50mm Ablative Coated Batt is associated with the following NBS clauses:

P12 Fire stopping systems

- 325 Boards: Mineral Bound Lightweight
- 360 Mineral Wool Rigid Batts
- 365 Mineral Wool Rigid Batts: Ablative Coated

For a comprehensive range of ROCKWOOL solutions for penetrating services passing through the Ablative Coated Batt, please refer to the applicable ROCKWOOL standard details available at www.rockwool.co.uk or contact ROCKWOOL Technical Solutions.
FIREPRO®
60mm Ablative Coated Batt

Description
The ROCKWOOL Ablative Coated Batt comprises a high-density stone wool core, pre-coated on both sides with our high-performance ablative coating. Ablative Coated Batt has been comprehensively tested as part of the ROCKWOOL FIREPRO® range of fire protection products, specifically for use in service penetrations, head of wall and other void seals.

Advantages
- Excellent fire resistance from a single thickness batt
- Suitable for sealing 20m long x 1.2m high voids at head of wall
- Suitable for large unframed voids up to 7.02m²
- Tested with dampers
- Comprehensively tested as part of the FIREPRO® suite of solutions
- Lightweight and simple to install
- Tested for air tightness, providing an additional smoke and acoustic seal

Applications
- Multiple substrates including: solid walls and floors; flexible walls
- Multi-service penetrations
- Head of wall
- Blank seals
- Face-fixed applications
For a fully comprehensive list of applications, please refer to the appropriate ROCKWOOL standard details available at www.rockwool.co.uk or contact the ROCKWOOL Technical Solutions Team.

Performance
Fire performance
Tests have proved the capability of a single 60mm Batt to provide up to 4 hours fire resistance Integrity and Insulation ratings are dependent upon the service penetrations and void size.

Acoustic performance
Tested for head of wall:
- Rw= up to 52db (2 x Coated batts)
- Rw= up to 38db (1 x Coated batts)
The correct use of Coated batt within concealed cavities and voids will reduce the level of transmitted sound:
- Rw= up to 52 db (2 x Coated batts) - incorporating 48mm O/D PVC /15mm copper pipe penetrations.
- Rw= up to 34 db (1x Coated batts) - incorporating 48mm O/D PVC /15mm copper pipe penetrations.
For specific acoustic requirements please contact ROCKWOOL Technical Solutions.

Standard and approvals
BS EN 1366-3: 2009 and the dedicated fire resistance standard for linear joint seals, BS EN 1366-4:2006. Ablative Coated Batt has been classified in accordance with BS EN 13501-2. 60mm Ablative Coated Batt is also comprehensively tested to BS 476 Part 20 & 22.
Third party accreditation through IFC and Certifire.
CE marked to ETAG 26-02.
For further information on the full scope of fire performance please refer to the appropriate standard details available www.rockwool.co.uk or contact ROCKWOOL Technical Solutions.

Product information
<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1200mm</td>
</tr>
<tr>
<td>Width</td>
<td>600mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>60mm</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 4 hours</td>
</tr>
<tr>
<td>Density</td>
<td>180kg/m³</td>
</tr>
<tr>
<td>Air leakage</td>
<td>0.41m³/h/m²</td>
</tr>
</tbody>
</table>

Note: All Ablative Coated Batt fire resistance tests were conducted using ROCKWOOL FIREPRO® ancillary products as appropriate.
Fire stopping: Section 1 - Penetration seals

Installation

1. Make sure that the area within the aperture is clean of any debris and remove any dust from the edges.
2. Cut ROCKWOOL Ablative Coated Batt to the size and shape required to fit the aperture ensuring that batt will make a tight fit with all edges of the aperture.
3. Cut rectangular holes from the coated batt to accommodate cable trays or ladders containing cables.
4. Cut the Coated Batt across its width at the mid-point of each rectangular hole to enable the Batt to be fitted into the aperture.
5. Apply ROCKWOOL Acoustic Intumescent Sealant to all edges of the Batt ensuring that an even cover is achieved over the entire thickness of the Batt. This should include the outer edges of the Batt and the edges of the cuts made across the Batt to allow fitting into the aperture.
6. Insert the Batt into the aperture.
7. Apply a bead of ROCKWOOL Acoustic Intumescent Sealant approximately 15mm wide around the perimeter of the Batt ensuring that all gaps between the Batt and surrounding edges are fully filled.
8. Apply a bead of ROCKWOOL Acoustic Intumescent Sealant approximately 15mm wide where cables pass through the Batt. Ensure that the sealant fully enclosed each cable within the tray or ladder and that all gaps are fully filled.
9. Repeat step 7 and 8 on the other side of the Batt.

Note: For any areas of Batt where the coating has been damaged, repaint with the Ablative Coating. Ensure that there is no uncoated slab or bare mineral wool visible.

Other installation information

FIREPRO® Ablative Coated Batts are not intended for use as load-bearing seals. Where a load-bearing seal is required, ROCKWOOL Firestop Compound should be considered. For seals over 1200mm x 1200mm Batt to Batt joints are to be fully coated with FIREPRO® Glue.

Specification clauses

60mm Ablative Coated Batt is associated with the following NBS clauses:

P12 Fire stopping systems
• 325 Boards: Mineral Bound Lightweight
• 360 Mineral Wool Rigid Batt
• 365 Mineral Wool Rigid Batt: Ablative Coated

For a comprehensive range of ROCKWOOL solutions for penetrating services passing through the Ablative Coated Batt, please refer to the applicable ROCKWOOL standard details available at www.rockwool.co.uk or contact ROCKWOOL Technical Solutions.
Applications

The ablative Coating is available separately to enable site repairs to Ablative Coated Batt, that may have been damaged during installation.

ROCKWOOL Ablative Coated Batt is intended to act as an air seal barrier to reinstate the fire resistance and acoustic performances of concrete floors, masonry walls and dry wall systems when voids have been created for the passage of services. This includes pipes made of plain or stainless steel, cast iron, copper, polypropylene (PP), high density polythene (HDPE), PVC and ABS along with all sheathed cables up to 80mm and supported cable bundles up to 100mm.

Performance

Fire performance

ROCKWOOL Ablative Coating is designed to re-seal the surface of Ablative Coated Batt where damage to the ablative coating may have occurred during installation.

ROCKWOOL Ablative Coated Batt has been tested to the dedicated fire resistance standard for penetration seals EN 1366-3. The independently prepared assessment, detailing the full scope of fire performance, is available from the ROCKWOOL Technical Solutions Team. Ablative Coated Batt fire resistance tests were conducted using ROCKWOOL acoustic Intumescent Sealant and/or ROCKWOOL FIREPRO® Glue.

ROCKWOOL Ablative Coating and stone wool slabs may only be used to fire protect service penetrations if supported by independent fire test evidence due to the variants in the density and thicknesses of stone wool slabs available.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cure system</td>
<td>Water Loss</td>
</tr>
<tr>
<td>Colour</td>
<td>White</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.3 – 1.4</td>
</tr>
<tr>
<td>pH</td>
<td>8.5 – 9.2</td>
</tr>
<tr>
<td>Flashpoint</td>
<td>None</td>
</tr>
<tr>
<td>Solids content (%w/w)</td>
<td>>58%</td>
</tr>
<tr>
<td>Application temp range</td>
<td>+10°C to +30°C</td>
</tr>
<tr>
<td>Vice temp range</td>
<td>-15°C to +75°C</td>
</tr>
<tr>
<td>Shelf life</td>
<td>Up to 12 months when stored in unopened containers under cool, dry conditions. AVOID FROST and extremes of temperature.</td>
</tr>
<tr>
<td>Durability</td>
<td>Up to 15 years when used as recommended</td>
</tr>
<tr>
<td>Flashpoint</td>
<td>180kg/m³</td>
</tr>
<tr>
<td>Solids content (%w/w)</td>
<td>0.41m³/h/m²</td>
</tr>
</tbody>
</table>

Installation

ROCKWOOL Ablative Coating can be spray or brush-applied.

Specification clauses

ROCKWOOL Ablative Coating is associated with the following NBS clauses:

P12 Fire stopping systems

- 325 Boards: Mineral Bound Lightweight
- 360 Mineral Wool Rigid Batts
- 365 Mineral Wool Rigid Batts: Ablative Coated

Description

The ROCKWOOL ablative Coating is a water based, ready to use viscous paste which may be brush or spray-applied to stone wool slabs. The coating is available in white and in other colours subject to minimum order quantities. The coating may be over painted if desired*. ROCKWOOL Ablative is supplied in 5l tubs.

Advantages

- Suitable for spray or brush application
- Dries to give a sound, flexible white surface finish
- Provides a stable surface for adhesive and fixing sealants

*Please contact ROCKWOOL Technical Solutions for guidance on suitable paints
ROCKWOOL®
Firestop Compound

Description
Firestop Compound is a specially formulated gypsum-based compound, which is mixed with water to be trowelled or poured around service penetrations.

Advantages
- Inhibits smoke
- Good acoustic barrier
- Suitable for sealing around most types of service penetrations
- Load bearing capability
- Simple installation
- No smoke emission
- Unaffected by humidity

Applications
- Re-instating the fire resistance of wall and floor constructions
- Load bearing floors
- Wall penetrations
- Load bearing seals around unsupported fire dampers

Performance

Acoustic performance

<table>
<thead>
<tr>
<th>Thickness of Compound (mm)</th>
<th>Weighted Sound Reduction Index (Rw)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>39dB</td>
</tr>
<tr>
<td>100</td>
<td>46dB</td>
</tr>
<tr>
<td>150</td>
<td>51dB</td>
</tr>
</tbody>
</table>

For specific information on acoustic performance please contact ROCKWOOL Technical Solutions on 01656 868490 or technical.solutions@rockwool.co.uk.

Load bearing capability

<table>
<thead>
<tr>
<th>Thickness of Compound (mm)</th>
<th>Max. load bearing area free of services</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>500 x 500mm</td>
</tr>
<tr>
<td>100</td>
<td>750 x 750mm</td>
</tr>
</tbody>
</table>

Openings with a clear area larger than 750 x 750mm need to be reinforced as outlined within the installation section. For further information on the reinforcement of openings greater than 750 x 750mm, please contact ROCKWOOL Technical Solutions on 01656 868490 or technical.solutions@rockwool.co.uk.

Technical information

Standards and approvals
FIREPRO® Firestop Compound has been tested to BS 476 Part 20:1987
FIREPRO® Firestop Compound is third party accredited through IFC and Certifire.

This product has been authorised for use in LUL surface and sub-surface premises when installed in accordance with this datasheet - please refer to the LUL Approved Product Register website www.LUL-apr.co.uk for specific details.

Fire performance
Firestop Compound has been independently tested for use in walls and floors.
When reinforced, Firestop Compound offers up to 360mins protection for both Integrity and Insulation in masonry/concrete walls or concrete floors.
When un-reinforced, Firestop Compound offers up to 240mins protection for both Integrity and Insulation in masonry/concrete walls or concrete floors.

Plastic pipework must be protected with either ROCKWOOL Firestop Pipe Collars or Intumescent Pipe Wraps.

For further advice on specific applications and fire performance, please contact ROCKWOOL Technical Solutions on 01656 868590 or technical.solutions@rockwool.co.uk.

Firestop Compound - Spans with services

<table>
<thead>
<tr>
<th>Firestop Compound thickness (mm)</th>
<th>Fire rating (hours)</th>
<th>Max. opening width x any linear length (mm)</th>
<th>Load bearing capacity (Kn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>2</td>
<td>500</td>
<td>2.5</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
<td>750</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Fire stopping: Section 1 - Penetration seals

Simply reinforced seals

<table>
<thead>
<tr>
<th>Firestop Compound thickness (mm)</th>
<th>Fire rating (hours)</th>
<th>Max. opening width x any linear length (mm)</th>
<th>Load bearing capacity (Kn)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>4</td>
<td>Up to 1500</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pack Size</td>
<td>22kg Bag</td>
</tr>
<tr>
<td>Fire Resistance</td>
<td>Up to 6 hours</td>
</tr>
<tr>
<td>Load Bearing Capacity</td>
<td>Up to 2.5KN</td>
</tr>
<tr>
<td>Acoustic Performance</td>
<td>Up to 51dB</td>
</tr>
</tbody>
</table>

Installation

Floor installations

In floors, a permanent shuttering made from 50mm ROCKWOOL slab (minimum density 140kg/m³) is cut and friction fitted between services and the edges of the floor slab. Firestop Compound is then trowelled over the shutter to a depth of 25mm thick. This is allowed to cure. Further Firestop Compound is then mixed to a pouring grade and tops the seal up to the required depth (See Figure 1).

Firestop Compound sets in 30-45 minutes and is capable of accommodating light foot traffic in approximately 72 hours.

Installation instructions – Floors

1. Mix a bag of compound to 10 litres of water (3:1) by volume. Vary to suit site conditions.
2. Set the shuttering into the opening ensuring a tight fit so that once the required depth of compound is installed it finishes flush with the floor slab/screed unless otherwise specified.
3. Mix and pour compound until the required thickness is achieved.

Wall installations

In wall applications (See Figure 2), Firestop Compound is mixed into a stiff consistency for trowelling into openings.

Installation instructions – Walls

1. Mix a bag of compound to 10 litres of water (3:1) by volume. Vary to suit site conditions.
2. Apply the compound using the specified shuttering method (See Figure 3).
3. Trowel the compound starting at the base of the opening ensuring the correct thickness of material is installed. Work progressively towards the top of the opening until the barrier is complete. If the shuttering panel is set at the centre, repeat the process on the other side.

Wall structure

ROCKWOOL Firestop Compound 100mm thick

120 minute Fire Damper

1000mm x 1000mm

Figure 2

Figure 3

Coverage

<table>
<thead>
<tr>
<th>Thickness of compound (mm)</th>
<th>Number of bags/m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>3.15</td>
</tr>
<tr>
<td>100</td>
<td>4.20</td>
</tr>
<tr>
<td>150</td>
<td>4.30</td>
</tr>
</tbody>
</table>

The above calculations are approximate and based on 22kg bags. The coverage rates shown do not take into account the area of service penetrations within the aperture.

Specification clauses

ROCKWOOL Firestop Compound is associated with the following NBS clauses:

P12 Fire stopping systems

- 340 Intumescent Mortar
Fire stopping: Section 1 - Penetration seals

FIREPRO®

HS Firestop Compound

Advantages
- Unsupported spans of up to 1800mm
- High load bearing capacity
- Suitable for use with multiple service penetrations
- Can be formed into blocks
- Good acoustic barrier
- Effective smoke seal
- Rapid setting

Description
HS Firestop Compound is a specially formulated gypsum-based mortar, which is mixed with water to create a workable range from stiff to pourable mix. HS Firestop Compound is also suitable for pre-casting into convenient size blocks for use in wall openings.

Applications
- Re-instating the fire resistance of wall and floor constructions
- Load-bearing floors
- Wall penetrations
- Load-bearing seals around unsupported fire dampers

Performance

Fire performance
HS Firestop Compound has been independently tested for use in walls and floors.
Plastic pipework must be protected with either ROCKWOOL Firestop Pipe Collars or Intumescent Pipe Wraps.
For further advice on specific applications and fire performance, please contact ROCKWOOL Technical Solutions on 01656 868590 or technical.solutions@rockwool.co.uk

Floor seals - Maximum aperture 1800 x 1800

<table>
<thead>
<tr>
<th>Service</th>
<th>Diameter (mm)</th>
<th>Wall thickness (mm)</th>
<th>Min floor thickness (mm)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper pipe †</td>
<td>40 - 107</td>
<td>1.5 - 14.2</td>
<td>100</td>
<td>60 15</td>
</tr>
<tr>
<td>Steel pipe †</td>
<td>40 - 115</td>
<td>3.5 - 14.2</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>Steel pipe †</td>
<td>116 - 160</td>
<td>5.14 - 2</td>
<td>100</td>
<td>120 90</td>
</tr>
<tr>
<td>Electrical cables P</td>
<td>≤80</td>
<td>N/A</td>
<td>100</td>
<td>120 60</td>
</tr>
<tr>
<td>Non-sheathed wires P</td>
<td>≤24</td>
<td>N/A</td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>Telecom cables P</td>
<td>100mm bundle</td>
<td>N/A</td>
<td>150</td>
<td>120</td>
</tr>
</tbody>
</table>

Floor seals – Maximum aperture unlagged solutions for cables and conduits

<table>
<thead>
<tr>
<th>Service</th>
<th>Diameter (mm)</th>
<th>Wall thickness (mm)</th>
<th>Min wall thickness (mm)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable trays</td>
<td>≤450mm</td>
<td></td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>Cable ladders</td>
<td>≤300mm</td>
<td></td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>Electrical cables</td>
<td>≤21mm</td>
<td></td>
<td>100</td>
<td>120</td>
</tr>
<tr>
<td>Non-combustible conduits</td>
<td>≤16mm</td>
<td></td>
<td>100</td>
<td>90</td>
</tr>
</tbody>
</table>

Rigid walls min 150mm thick - Maximum aperture 2600 x 2600

<table>
<thead>
<tr>
<th>Service</th>
<th>Diameter (mm)</th>
<th>Wall thickness (mm)</th>
<th>Min wall thickness (mm)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank seal 2.6 X 2.6M</td>
<td>No services</td>
<td></td>
<td>150</td>
<td>240</td>
</tr>
<tr>
<td>Non-combustible pipe</td>
<td>40 - 219†</td>
<td>1.0 - 14.2</td>
<td>150</td>
<td>240</td>
</tr>
<tr>
<td>Perforated cable trays</td>
<td>≤500mm</td>
<td>n/a</td>
<td>150</td>
<td>240</td>
</tr>
<tr>
<td>Non-perforated cable trays</td>
<td>≤500mm</td>
<td>n/a</td>
<td>150 240</td>
<td>180</td>
</tr>
<tr>
<td>Cable ladders</td>
<td>≤350mm</td>
<td>n/a</td>
<td>150 240</td>
<td>120</td>
</tr>
<tr>
<td>Cable ladders</td>
<td>≤200mm</td>
<td>n/a</td>
<td>150 240</td>
<td>120</td>
</tr>
<tr>
<td>Electrical cables (s)</td>
<td>≤21mm</td>
<td>n/a</td>
<td>150 240</td>
<td>120</td>
</tr>
<tr>
<td>Electrical cables (m)</td>
<td>22 - 50mm</td>
<td>n/a</td>
<td>150 240</td>
<td>120</td>
</tr>
<tr>
<td>Electrical cables (l)</td>
<td>51 - 80mm</td>
<td>n/a</td>
<td>150 240</td>
<td>120</td>
</tr>
<tr>
<td>Non combustible conduits</td>
<td>≤16mm</td>
<td>n/a</td>
<td>150 240</td>
<td>240</td>
</tr>
<tr>
<td>Combustible conduits</td>
<td>≤16mm</td>
<td>n/a</td>
<td>150 240</td>
<td>180</td>
</tr>
</tbody>
</table>

† - Service fitted with 50mm thick H&V 510mm above floor (L/I)
† † - Service fitted with 25mm thick Ductwrap 500mm above floor (L/I)

- Service fitted with 1m long 25mm thick H&V section (C/S) - 0mm separation distance to each other and aperture opening
- When installed in opening with cable services, the diameter ranges reduce to 40 - 108 with 10mm spacing
Acoustic performance

HS Firestop Compound has been tested in accordance with EN 10140 achieving Rw 57dB at a depth of 100mm (with 50mm ROCKWOOL shuttering batt).

For specific information on acoustic performance please contact ROCKWOOL Technical Solutions on 01656 868490 or technical.solutions@rockwool.co.uk

Load bearing capability

HS Firestop Compound in floor spans of up to 1800mm without the need for further reinforcement. For further information on the load bearing capacity of HS Firestop Compound, please contact ROCKWOOL Technical Solutions.

Technical information

Standards and approvals

FIREPRO® HS Firestop Compound has been tested for resistance in accordance with BS 476 Part 20 and EN 1366-3.

HS Firestop Compound has been classified as EI 120 in accordance with EN 13501-2

FIREPRO® Firestop Compound is third party accredited through Certifire.

This product has been authorised for use in LUL surface and sub-surface premises when installed in accordance with this datasheet - please refer to the LUL Approved Product Register website www.LU-apr.co.uk for specific details.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Grey coloured free flowing powder</td>
</tr>
<tr>
<td>Pack size</td>
<td>20kg bag</td>
</tr>
<tr>
<td>Density</td>
<td>1750-1900kg/m³</td>
</tr>
<tr>
<td>Loadbearing</td>
<td>2.5KN/m² UDL</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 4 hours</td>
</tr>
<tr>
<td>Acoustic performance</td>
<td>Rw 57dB (100mm Depth)</td>
</tr>
<tr>
<td>Max unsupported span</td>
<td>1800mm</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>0.45W/mK</td>
</tr>
<tr>
<td>Setting expansion (%)</td>
<td>0.1</td>
</tr>
<tr>
<td>Typical yield</td>
<td>±6bags/m² at 100mm depth</td>
</tr>
<tr>
<td>Expected shelf life</td>
<td>6 months (When stored in accordance with the packaging instructions)</td>
</tr>
</tbody>
</table>

Installation

Mixing

HS Firestop Compound can be mixed preferably by mechanical paddle or manually, if required. Measure out the correct amount of clean water into a clean container to achieve the desired consistency.

Avoid any cross-contamination with part-cured and new mixes as this can accelerate curing times.

HS Firestop Compound: water ratio

Pourable Mix ratio of 3 - 3Vz:1

Trowel Mix ratio of 4:1

Gradually add the HS Firestop Compound, stirring continually. Continue mixing until the compound is mixed to a smooth, even consistency. Any spillage should be wiped up with a damp cloth before setting occurs*. Mix only enough material sufficient for use within the recommended pot life (20-30 minutes). Pot life and set times will be reduced for lower water content and higher temperatures.

*HS Firestop Compound may stain pipes and services

Installation should not be carried out when temperatures are above 35°C. Setting times are normally between 30 and 90 minutes.

Fit a shuttering board to the bottom of the opening. Shuttering materials must be able to support the wet weight of the compound under pouring conditions. Pour HS Firestop Compound to the required 100mm thickness.

Note: Do not attempt to extend working time by remixing with additional water once the mortar has started to set, as this will interfere with the setting process. Always mix in clean buckets.

General installation requirements

Ensure that the aperture and services in question are tested with HS Firestop Compound, and the site conditions are within the application specification.

All services and apertures need to be clean and clear of all dust and loose particles. The aperture temperature needs to be at 5°C or above at time of installation. Plastic pipework must be protected with either ROCKWOOL Firestop Pipe Collars or Intumescent Pipe Wraps.

Upon installation make sure that you install the HS Firestop Compound to the recommended ratio for the aperture you are installing, make sure that you fill the full depth in a single pour to create a solid structure. Apply a minimum depth of 100mm in a single pour to achieve loadbearing capabilities.

Once filled, smooth off the HS Firestop Compound to produce a professional finish.

Wall openings (Figure 1)

For small holes and gaps, trowel a stiff mix into the opening to the correct depth. For larger holes, use an appropriate non-combustible shuttering material to support the mix until it sets, or, if a fair faced finish is required to both sides, consider using a sandwich construction. Alternatively, the HS Firestop Compound may be pre-cast into convenient sized blocks, a stiff mix being used as a bedding mortar. All combustible services (Plastic Pipes etc.) should have a ROCKWOOL tested fire rated device/material fitted prior to the pouring of the HS Firestop Compound.
Fire stopping: Section 1 - Penetration seals

Floor openings (Figure 2)

When sealing holes in floor slabs, appropriate shuttering must be installed, cut to fit tightly around any services within the opening, to support the wet mix until it sets. Non-combustible shuttering materials, such as mineral fibre slab, can be left in place, but combustible materials must be removed, after the mix has set. For complex penetrations it may be preferable to initially form a thin seal around all services with a nominal 5mm layer of the HS Firestop Compound mix. Once this has set, the remaining depth of seal should be poured in one operation. All combustible services (Plastic Pipes etc.) should have a tested fire rated closure device/material fitted prior to the pouring of the HS Firestop Compound.

Specification clauses

ROCKWOOL Firestop Compound is associated with the following NBS clauses:

- P12 Fire stopping systems
 - 340 Intumescent Mortar
FIREPRO®
Intumescent Pillows CE

Description
FIREPRO® Intumescent Pillows CE consist of intumescent material encased within a waterproof glass cloth bag. Intumescent Pillows CE are designed to create a temporary or permanent fire seal around all types of services to maintain continuity of fire performance of compartment walls and floors. They are an ideal solution for applications where services are required to be changed or replaced on a regular basis. Easy to install, they are simply packed tightly in between penetrating services and the wall. In a floor, pillows are additionally supported by means of a mesh support system (see Figure 2 on page 6).

Advantages
- Easy to install
- Easy to remove and reinstate when changing services
- Maintenance free
- Dry system
- Reusable

Applications
Under fire conditions, Intumescent Pillows CE expand several times their original volume to form an effective seal around service penetrations. Intumescent Pillows CE are suitable for use with:
- Metal pipework
- Plastic conduits
- Cable trays/ladders

Note: For applications inside metal cable trunkings please contact ROCKWOOL

Performance

Fire performance
ROCKWOOL Intumescent Pillows CE provide up to 2 hours fire rating where services pass through fire-rated walls.

Table 1: Performance in Masonry Supporting Walls - BS EN 1366-3:2009
Rigid wall construction 150mm thick (min.) Intumescent Pillow CE seals 330mm deep laid centrally within the aperture with 75mm projection from each face of wall. Additional FIREPRO® Intumescent Pillows CE to be sewn to provide additional protection to the cable to minimum distance of 300mm either face of the seal.

<table>
<thead>
<tr>
<th>Services</th>
<th>Integrity (E)</th>
<th>Insulation (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Telecom cables up to 21mm Ø (single or bundles up to 100mm Ø)</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Electrical cables up to 21mm Ø</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Electrical cables up to 50mm Ø</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>Electrical cables up to 80mm Ø</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>Unsheathed wires up to 24mm Ø</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Steel or Copper conduits and tubes up to 16mm Ø</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Plastic (any) conduits and tubes up to 16mm Ø</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>Cable trays or ladders up to 300mm wide</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>Cable trays up to 500mm wide</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td>108mm Ø x 1.5-14.2mm thick copper pipe (C/U)*</td>
<td>120</td>
<td>90</td>
</tr>
</tbody>
</table>

Note: Maximum aperture size 1100mm x 1100mm

Minimum density masonry walls - 650kg/m³ 330mm bag length to be laid horizontally in wall void. Bags should be laid centrally within all wall thicknesses.

Figure 1
Fire stopping: Section 1 - Penetration seals

All pipes tested according to EN 1366-3 have been tested with a specific pipe end configuration. All pipes have been tested U/C unless otherwise stated in the tables.

The EN test standard EN 1366-3 states, “it is important to ensure that sealing systems have been tested with appropriate pipe end conditions.”

The specification of pipe closure devices will be determined based on the scope of test data and whether the pipework is ventilated or not.

Table 2: Performance in Masonry Supporting Walls - BS EN 1366-3:2009

<table>
<thead>
<tr>
<th>Services</th>
<th>Fire resistance (min)</th>
<th>Integrity (E)</th>
<th>Insulation (I)</th>
</tr>
</thead>
<tbody>
<tr>
<td>165mm Ø x 5.6-14.2mm thick mild steel pipe (C/U)*</td>
<td>120</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>48mm Ø x 3.5-14.2mm thick steel pipe with 300mm local interrupted (L)** foil faced ceramic blanket 7mm thick (C/U)*</td>
<td>120</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>113mm Ø x 4.5-14.2mm thick steel pipe with 300mm local interrupted (L)** foil faced ceramic blanket 10mm thick (C/U)*</td>
<td>120</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

Note: Maximum aperture size 1100mm x 1100mm

Table 3: Performance in Masonry Supporting Floors - BS 476:Part 20:1987

<table>
<thead>
<tr>
<th>Services</th>
<th>Pillow thickness (mm)</th>
<th>Fire resistance (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cable ladders & communication cables</td>
<td>150</td>
<td>60</td>
</tr>
<tr>
<td>Cable ladders & communication cables</td>
<td>200</td>
<td>60</td>
</tr>
<tr>
<td>Cable ladders & communication cables</td>
<td>250</td>
<td>60</td>
</tr>
<tr>
<td>Cable ladders & communication cables</td>
<td>300</td>
<td>60</td>
</tr>
<tr>
<td>Cable ladders & communication cables</td>
<td>150</td>
<td>60</td>
</tr>
<tr>
<td>Cable ladders & communication cables</td>
<td>200</td>
<td>60</td>
</tr>
<tr>
<td>No Services - blank seal</td>
<td>150</td>
<td>60</td>
</tr>
<tr>
<td>No Services - blank seal</td>
<td>200</td>
<td>60</td>
</tr>
</tbody>
</table>

Note: Maximum aperture size 1100mm x 1100mm

Steel mesh (50mm square with 5mm wire) to be mechanically fastened within the reveal of the aperture via returning the edge of the wire mesh.

Pillows to be packed tightly into the opening and around the services.

Key
* The product can withstand temperature travelling along the service. ** LI - Local interrupted - insulation installed up to face of pillows.
U/U = Uncapped inside and outside the furnace
U/C = Uncapped inside and capped outside the furnace.
C/U = Capped inside and Uncapped outside the furnace.

Concrete floor construction to be 100mm thickness for fire periods up to 60 minutes and 150mm thickness for periods up to 120 minutes. The minimum density for the concrete floor is 780kg/m³.
Fire stopping: Section 1 - Penetration seals

Technical information
Standards and approvals
FIREPRO® Intumescent Pillows CE have been tested in accordance with BS EN 1366 Part 3: March 2009 achieving fire resistance of up to 2 Hours (EI120) in walls and dependent upon service type - see Tables 1 & 2 (pages 4 & 5).
FIREPRO® Intumescent Pillows CE have been tested in accordance with BS 476:Part 20:1987 in rigid floors achieving fire resistance of up to 2 hours (EI120) - see Table 3 (page 6).

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>330mm</td>
</tr>
<tr>
<td>Width</td>
<td>50mm, 200mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>20mm, 25mm, 45mm</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 2 hours integrity and insulation (EI120)</td>
</tr>
<tr>
<td>Application</td>
<td>Internal</td>
</tr>
<tr>
<td>Shelf life</td>
<td>N/A if stored in cool, dry, well ventilated area</td>
</tr>
<tr>
<td>Acoustic</td>
<td>Airborne Sound Insulation Rw (C,Ctr) = 33 (0.2)</td>
</tr>
<tr>
<td>Air permeability</td>
<td>Tested to EN1026</td>
</tr>
</tbody>
</table>

Installation

Installation in floors
1. Make a basket using galvanised steel mesh (50 x 50mm squares x 5mm wire diameter) to sit into the hole in the floor slab. There should be a minimum 50mm overlap onto the surrounding floor slab or wall. Mechanically fix to top of floor slab or wall.
2. Lay Intumescent Pillows CE standing on end into the wire basket. Pack the pillows tightly into the basket around the penetrating services.
3. If required, lay a sheet of the galvanised steel mesh over the basket and tie together using steel wire.

Installation in walls
1. Push the first Intumescent Pillow CE into the hole to be filled, so that the longest dimension (330mm long) spans across the wall with 75mm projection from either face.
2. Pack the hole tightly with additional Intumescent Pillows CE, staggering the joints, until it is tightly packed.
3. For wall penetrations, the pillows are normally self supporting, but for large openings with few penetrations, you may require a steel retaining mesh for support on both sides of the penetration.
4. Smaller pillows are used as appropriate to fill smaller gaps.

Installation of service penetrations
1. The total amount of cross sections of services should not exceed 60% of the penetration area.
2. The minimum permitted separation between adjacent seals/apertures is 200mm.
3. Pipes must be installed singular, cables require no minimum separation.
4. Services in walls shall be supported via steel angles/hangars/channels a maximum 250mm (BS EN 1366-3:2009) or a maximum 500mm (BS 476:Part 20:1987) from the face of the separating element.
5. Pipes must be perpendicular to the seal surface.

Coverage

Table 4: Estimating quantities.

<table>
<thead>
<tr>
<th>Pillow size (mm)</th>
<th>Approximate number</th>
</tr>
</thead>
<tbody>
<tr>
<td>330 x 200 x 45</td>
<td>113 per m² opening</td>
</tr>
<tr>
<td>330 x 200 x 25</td>
<td>180 per m² opening</td>
</tr>
<tr>
<td>330 x 50 x 20</td>
<td>As required to fill small voids</td>
</tr>
</tbody>
</table>

Specification clauses
FIREPRO® Intumescent Pillows CE are associated with the following NBS clauses:
P12 Fire stopping systems
• 345 Intumescent pillows
Fire stopping: Section 1 - Penetration seals

FIREPRO® Multi-Cable Firestop

Description
Multi-Cable Firestop is compressible fire retardant foam which is laminated both sides with a graphite based intumescent polymer. Multi-Cable Firestop is supplied in sections measuring 60mm wide x 25mm thick x 1000mm long.

Advantages
- Simple to install
- Cables can be easily added/removed
- No de-rating of cables required
- Maintenance free
- Dry installation

Performance
Fire performance

<table>
<thead>
<tr>
<th>Services and support</th>
<th>Surrounding penetration seal</th>
<th>Width of fire stop for each Coated Batt (mm)</th>
<th>Maximum void height (mm) (no. of fire stop plies)</th>
<th>Fire resistance integrity (mins)</th>
<th>Seal in masonry wall</th>
<th>Seal in plaster-board wall</th>
<th>Seal in a concrete floor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cables (see note 1) secured to appropriately supported perforated steel cable trays/ladders</td>
<td>Single 60mm ROCKWOOL Ablative Coated Batt</td>
<td>60</td>
<td>25(1) 55(2) 80(3)</td>
<td>180 120 120</td>
<td>180 120 n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Double 60mm ROCKWOOL Ablative Coated Batt</td>
<td>60</td>
<td>25(1) 55(2) 80(3)</td>
<td>240 240 60</td>
<td>240 240 n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cables (see note 1) within PVC trunking (max. 100 x 100mm)</td>
<td>Double 60mm ROCKWOOL Ablative Coated Batt with no air gap</td>
<td>60</td>
<td>100(1)</td>
<td>240 60</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fire performance - Service penetration requirements
1. Suitable for copper cored / PVC sheathed and insulated power cables up to 12mm diameter, secured on perforated trays/ladders or within PVC trunking passing through both walls and floors.
2. Cables and trays must be supported within 500mm on both sides of the seal.
3. Maximum of 3 layers of cables, each layer sealed with the Multi-Cable Fire stop.
4. The aperture width cut from the ablative Coated Batt should match the width the cable tray or PVC trunking (maximum 100mm).
5. There must be a minimum of 100mm width of ablative Coated Batt between the penetration and the edge of the main aperture within the supporting construction.
6. Maximum depth filled must not exceed 60mm.

Applications
FIREPRO® Multi-Cable Firestop has been developed to provide fire protection in all electrical trunking and cable trays at the junction in which these services pass through the compartment wall. FIREPRO® Multi-Cable Firestop can be used where electrical services pass through both walls and floors providing up to 4 hours fire resistance.
Technical information

Standards and approvals

FIREPRO® Multi-Cable Firestop has been tested to BS 476: Part 20: 1987 and can provide up to 4 hours fire protection in joints.

Acoustic Intumescent Sealant is third party accredited through IFC and Certifire.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1000mm</td>
</tr>
<tr>
<td>Width</td>
<td>80mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>25mm</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 4 hours</td>
</tr>
</tbody>
</table>

Installation

- Where a single Multi-cable Firestop is installed in fire-resisting walls (which will require fire resistance from either side), the Ablative Coated Batt and Multi-cable Firestop should be fitted centrally within the thickness of the wall. Twin layer Batts/Seals with an air gap should be aligned with each face of the wall.
- If a wall/floor does include a decorative finish, such as plaster, the Ablative Coated Batts must not be installed flush with the surface of this decorative finish; it must be recessed, to remain aligned with the face of the ‘solid’ construction.
- Where the Multi-cable Firestop is installed in fire-resisting floors, it shall be positioned approximately 15mm from the upper surface of the slab.
- Limitations and specifications for the construction of associated walls, partitions, and floors shall be as defined in Appendix K.
- Cables must be secured to perforated cable trays, which must be fully supported within at least 500mm of both sides of the construction element; and using a support system that will remain effective under fire conditions. Cable trays may penetrate horizontal or vertical construction elements.
- Cables may also be included within PVC trunking, which must be fully supported within at least 500mm of both sides of the construction element; and using a support system that will remain effective under fire conditions. PVC trunking may only penetrate walls. The lid of the trunking should be cut within 100-150mm of the Ablative Coated Batt barrier to facilitate the installation of, or access to, cables and the Multi-cable Firestop within the trunking.
- Only one single layer of cables may be included on each cable tray, or within the trunking, prior to application of the multi-cable firestop material. Additional cables may be included between extra sections of Multi-cable Firestop, if necessary, but only one single layer of cables may be included between each subsequent section of Multi-cable Firestop material, where included.
- Over-compression of the seal can cause lateral expansion or misalignment of the activated strips; and the seals should be installed carefully, with consideration to the layers/thickness of cables.
- Maximum diameter of any cable is 12mm, and only power cables, of the type with multi-core copper conductor and PVC insulation/sheath, are approved.
- The aperture in the Ablative Coated Batt must match the width of the perforated cable tray.
- The section(s) of Multi-cable Firestop must extend over the full width of the aperture within the Ablative Coated Batt; i.e. to fill the aperture and the tray.

Specification clauses

FIREPRO® Multi-Cable Firestop is associated with the following NBS clauses:

P12 Fire stopping systems
- 330 Fire stop laminate
Fire stopping: Section 1 - Penetration seals

FIREPRO® Intumescent Putty Pads

Description
Intumescent Putty Pads are manufactured from a red non-setting, flexible silicone based intumescent polymer. They will not harden, crack or dry out with age.

The intumescent properties activate as temperatures reach 200°C, restricting the passage of fire and smoke.

External socket Intumescent Putty Pads provide a fast, efficient and clean method of achieving the required fire and acoustic ratings as specified in the 2006 edition of the Building Regulations approved document part E and B, sections 7 and 7.12 b.

Advantages
- Available for single & double sockets
- Up to 2 hours fire resistance
- Reduces noise transfer
- Pre-cut for simple installation
- Maintenance free

Applications
Intumescent Putty Pads are designed for (but not limited to) effecting a fire and acoustic seal around plastic or metal electrical socket boxes. Using the putty pads removes the need to install time-consuming baffle boxes.

Under fire conditions the intumescent pad expands to fill the void left by the burnt out electrical socket box, preventing the spread of fire through the plasterboard wall. The intumescent putty can also be used for upgrading the acoustic performance of partitions where electrical socket boxes have penetrated the wall, reducing room-to-room noise transfer.

Performance
Fire performance
Tested to BS 476 Part 20:1987/EN1366-3, Acoustic Intumescent Putty Pads offer up to 2 hour fire resistance.

Acoustic performance
Measurement of airborne sound insulation was made in accordance with BS EN ISO 140-3:1995. Single number quantities were calculated in accordance with BS EN ISO 717-1:1997.

Intumescent Putty Pads (Internal socket) offer a weighted sound reduction index of up to 67dB. Tests were conducted by BRE Acoustics who hold UKAS accreditation for the measurement of sound insulation in the field and the laboratory.

The measurements were conducted using the procedures accredited by UKAS.

Technical information

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suitable socket size</td>
<td>Single & double gang</td>
</tr>
<tr>
<td>Suitable socket type</td>
<td>Internally & externally mounted</td>
</tr>
<tr>
<td>Activation temperature</td>
<td>200°C</td>
</tr>
<tr>
<td>Application temperature</td>
<td>0°C to 40°C</td>
</tr>
<tr>
<td>Acoustic performance</td>
<td>Up to 67 dB</td>
</tr>
<tr>
<td>Shelf life</td>
<td>Up to 24 months</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 2 hours</td>
</tr>
</tbody>
</table>
Fire stopping: Section 1 - Penetration seals

Installation

1. Remove the socket plate.
2. To ensure a high-quality seal, ensure the socket box is clean, dry and free from any dirt and dust.
3. Remove the protective paper from one side of the pad and align the pad so that it fits centrally over the switchbox. (can be installed to either the inside or the outside of the socket, depending on the fitting method / type of socket).
4. Firmly press and mould the pre-formed putty pad into the back of the box and around the cables ensuring the pad perimeter is sufficiently bonded.
5. Remove the remaining protective paper and trim off any excess material to leave a neat finish.
6. Replace and secure the socket plate.

Specification clauses

FIREPRO® Multi-Cable Firestop is associated with the following NBS clauses:

- P12 Fire stopping systems
 - 350 Intumescent Putty
Fire stopping: Section 1 - Penetration seals

FIREPRO® Pipe Collars CE

Applications
Tested to reinstate the fire performance of rigid and flexible walls (minimum 100mm) and rigid floors (minimum 150mm) where combustible plastic pipes penetrate.
Fire resistance testing to EN 1366-3 and proven to perform for up to EI 240 in rigid floors and EI 120 in flexible/rigid walls.
Used to seal standard plastic pipe penetrations 32mm – 250mm diameter.
Standard plastic pipes tested are PVC-U, PP, PE.
FIREPRO® Pipe Collar CE is supplied in assembled form, without fixings. The collar is wrapped around the pipe at the soffit of a rigid floor or both faces of rigid/flexible walls.

Performance

Table 1: Pipe Collar CE faced fixed on underside of Rigid Floor (min. 150mm thickness)

<table>
<thead>
<tr>
<th>Penetration specification</th>
<th>Diameter (mm)</th>
<th>Wall thickness (mm)</th>
<th>Fire performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP Pipes</td>
<td>32 - 160</td>
<td>2.9 - 14.6</td>
<td>240</td>
</tr>
<tr>
<td>PE Pipes</td>
<td>32 - 160</td>
<td>2.9 - 10</td>
<td>240</td>
</tr>
<tr>
<td>PVC-U</td>
<td>32 - 160</td>
<td>1.8 - 9.5</td>
<td>240</td>
</tr>
</tbody>
</table>

Table 1A: Pipe Collar CE faced fixed on both sides of Rigid Floor (min. 150mm thickness)

<table>
<thead>
<tr>
<th>Penetration specification</th>
<th>Diameter (mm)</th>
<th>Wall thickness (mm)</th>
<th>Fire performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP Pipe</td>
<td>110</td>
<td>2.7</td>
<td>120</td>
</tr>
<tr>
<td>PP Pipe</td>
<td>160</td>
<td>4</td>
<td>120</td>
</tr>
</tbody>
</table>

Table 1B: Face Fixed on Both Sides of Rigid Floor (min 150mm thick)

<table>
<thead>
<tr>
<th>Penetration specification</th>
<th>Diameter (mm)</th>
<th>Wall thickness (mm)</th>
<th>Fire performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP Pipes</td>
<td>110</td>
<td>2.7</td>
<td>EI 120 U/ U*</td>
</tr>
<tr>
<td>PP Pipes</td>
<td>160</td>
<td>4</td>
<td>EI 120 C/U*</td>
</tr>
</tbody>
</table>

Advantages
- High performance intumescent
- Quick and easy to install
- Up to EI240 fire resistance
- Suitable for flexible wall and rigid wall/floor constructions
- Available to suit plastic pipe sizes ranging from 32mm to 160mm OD.
- Allows for thermal and mechanical movement of pipe
- Tested in conjunction with FIREPRO® Ablative Coated Batt seals

Description
Tested to the harmonised European Standard EN 1366-3:2009, FIREPRO® Pipe Collar CE provides up to 4 hours fire stopping in rigid floor constructions and up to 2 hours fire stopping in flexible/rigid wall constructions. The penetration seal is certified to internationally recognised standards such as Certifire and CE marking.
FIREPRO® Pipe Collar CE is slim in design (depth 30mm or 40mm) allowing it to be installed around a service where space is restricted. FIREPRO® Pipe Collar CE can be installed on flexible wall, rigid wall and rigid floor constructions. When used around plastic combustible pipes, FIREPRO® Pipe Collar CE will form a penetration seal to reinstate the fire resistance performance of the wall or floor construction.
FIREPRO® Pipe Collar CE consists of a corrosion resistant powder coated steel sleeve, containing a flexible graphite based intumescent liner which is manufactured to suit standard diameter plastic pipework. Under fire conditions, the intumescent material within the collar expands, crushing the pipework and closing the void left by the pipework, preventing the passage of fire.

*U = Uncapped (pipe end open)
C = Capped (pipe end closed)

All pipes tested according to EN 1366-3 have been tested with a specific pipe end configuration. All pipes have been tested U/C unless otherwise stated in the tables.
The EN test standard EN 1366-3 states, “it is important to ensure that sealing systems have been tested with appropriate pipe end conditions.”
The specification of pipe closure devices will be determined based on the scope of test data and whether the pipework is ventilated or not.
Fire stopping: Section 1 - Penetration seals

Table 2: Pipe Collar CE faced fixed on both sides of Flexible or Rigid Wall (min 100mm thick)

<table>
<thead>
<tr>
<th>Penetration specification</th>
<th>Diameter (mm)</th>
<th>Wall thickness (mm)</th>
<th>Fire performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>32 - 160</td>
<td>1.8 - 9.5</td>
<td>Integrity (E) 120</td>
</tr>
<tr>
<td>PP</td>
<td>32 - 160</td>
<td>2.9 - 14.6</td>
<td>120</td>
</tr>
<tr>
<td>PE</td>
<td>32 - 160</td>
<td>2.7 - 10</td>
<td>120</td>
</tr>
</tbody>
</table>

Table 2A: Pipe Collar CE faced fixed on both sides of Rigid Wall

<table>
<thead>
<tr>
<th>Penetration specification</th>
<th>Diameter (mm)</th>
<th>Wall thickness (mm)</th>
<th>Fire performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP Pipe</td>
<td>110</td>
<td>27</td>
<td>120</td>
</tr>
<tr>
<td>PP Pipe</td>
<td>160</td>
<td>4</td>
<td>120</td>
</tr>
<tr>
<td>PP Pipe</td>
<td>250</td>
<td>6.2</td>
<td>120</td>
</tr>
</tbody>
</table>

Table 2B: FIREPRO® Pipe Collar CE installed on both sides of rigid wall

<table>
<thead>
<tr>
<th>Penetration specification</th>
<th>Diameter (mm)</th>
<th>Wall thickness (mm)</th>
<th>Fire performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP Pipes</td>
<td>110</td>
<td>27</td>
<td>EI 120 U/ U*</td>
</tr>
<tr>
<td>PP Pipes</td>
<td>160</td>
<td>4</td>
<td>EI 120 U/ U*</td>
</tr>
<tr>
<td>PP Pipes</td>
<td>250</td>
<td>6.2</td>
<td>EI 120 U/ C*</td>
</tr>
</tbody>
</table>

*U = Uncapped (pipe end open)
C = Capped (pipe end closed)

All pipes tested according to EN 1366-3 have been tested with a specific pipe end configuration. All pipes have been tested U/C unless otherwise stated in the tables.

The EN test standard EN 1366-3 states, “it is important to ensure that sealing systems have been tested with appropriate pipe end conditions.”

The specification of pipe closure devices will be determined based on the scope of test data and whether the pipework is ventilated or not.

Pipe Collar CE wall application

Table 3: FIREPRO® Pipe Collar CE secured to both faces of Ablative Coated Batt Seal (2 x 50 or 2 x 60mm). Max. opening 1200mm High x 730mm Wide in min. 100mm thick wall

<table>
<thead>
<tr>
<th>Penetration specification</th>
<th>Diameter (mm)</th>
<th>Wall thickness (mm)</th>
<th>Fire performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>32 - 160</td>
<td>1.8 - 9.5</td>
<td>Integrity (E) 120</td>
</tr>
<tr>
<td>PP</td>
<td>32 - 160</td>
<td>2.9 - 14.6</td>
<td>120</td>
</tr>
<tr>
<td>PE</td>
<td>32 - 160</td>
<td>2.9 - 10</td>
<td>120</td>
</tr>
</tbody>
</table>

FIREPRO® Pipe Collar CE secured to each face of Ablative Coated Batt Seal utilising 80mm long steel pig tail screws.
Technical information

Standards and approvals
- FIREPRO® Pipe Collar CE has been tested to BS EN 1366-3:2009
- FIREPRO® Pipe Collar CE has been third party accredited through Certifire

The independently prepared assessment, detailing the full scope of fire performance, is available from the ROCKWOOL Technical Solutions Team.

ROCKWOOL FIREPRO® Pipe Collar CE provides up to 4 hours fire resistance integrity and insulation for PVC-U, PP and PE pipes up to a maximum 14.6mm wall thickness, for standard diameters 32mm – 250mm.

The performance of FIREPRO® Pipe Collar CE will be determined by the performance of the substrate, so should 2 hours be the requirement of the collar then the substrate should be rated to no less than the collar.

For advice on types and sizes of pipes or particular applications, please contact the Technical Solutions Team on 01656 866490.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
<th>Test standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application temperature</td>
<td>-5°C to 40°C</td>
<td></td>
</tr>
<tr>
<td>Application</td>
<td>Internal or external (Conditioned to Type X - -20°C - +70°C)</td>
<td>EOTA TR 024</td>
</tr>
<tr>
<td>Expansion rate</td>
<td>20:1</td>
<td>EOTA TR 024</td>
</tr>
<tr>
<td>Expansion pressure</td>
<td>1.30</td>
<td>EOTA TR 024</td>
</tr>
<tr>
<td>Plastic types</td>
<td>PP, PVC-U, PE</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>Red</td>
<td></td>
</tr>
<tr>
<td>Fire Resistance – Rigid Floors</td>
<td>Up to 4 hours</td>
<td>EN 1366-3:2009</td>
</tr>
<tr>
<td>Fire resistance – flexible & rigid walls</td>
<td>Up to 2 hours</td>
<td>EN 1366-3:2009</td>
</tr>
<tr>
<td>Fixing detail</td>
<td>3 No 60mm x 6mm expanding anchors – rigid floors</td>
<td>Store in dry conditions unopened</td>
</tr>
<tr>
<td></td>
<td>3 No 70 wood screws - rigid walls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 No 65mm spider fixings - flexible walls</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 No 35mm tap in fixings - rigid walls & floors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 No. 80mm Steel Pigtail Screws - Ablative Coated Batt seals in walls</td>
<td></td>
</tr>
<tr>
<td>Expected shelf life</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

Installation

Installation of FIREPRO® Pipe Collar CE in walls

1. Walls shall be a minimum thickness of 100mm or greater.
2. Flexible drywalls/partitions shall comprise a minimum of 2 layers of ‘Type F’ Gypsum board on both faces, with minimum 50mm studs.
3. Solid block, masonry and concrete walls shall have a minimum density of 780kg/m³ and a minimum thickness of 100mm. Aerated concrete block shall have a minimum density of 600kg/m³.
4. Fire Stopping seals at maximum 1200mm high x 730mm wide consisting of a double layer of Ablative Coated Batt seal 2 x 50mm or 2 x 60mm.
5. All walls shall have at least the same fire resistance as that required of the sealing system.
6. Services penetrating the division shall be suitably supported via steel angles, hangers or channels, no further than 400mm from the surface of the sealing system on both faces.
7. Multiple apertures must be separated by a minimum of 200mm in drywalls and concrete/masonry constructions.
8. Check services to be treated are within scope of test data.
9. All services and apertures need to be thoroughly clean and clear of dust and loose particles.
10. Temperature to be 5°C or above at time of installation.
11. Gaps of up to 10mm wide around the service within the substrate can be filled with a minimum 5mm deep FIREPRO® Acoustic Intumescent Sealant.
12. In rigid walls, for gaps greater than 10mm wide, ROCKWOOL Firestop compound can be used.
13. Fixing straps on the FIREPRO® Pipe Collar CE are opened up and the collar is simply fitted around the plastic pipe with the fixing tabs closest to the face of the wall.
14. Lock the FIREPRO® Pipe Collar CE around the pipe by closing the fixing strap. The collar is pushed flush to the surface of the wall.
15. The collar is then securely fastened to the substrate by means of fire rated fixings to suit the substrate and installed through the fixing tabs. Steel pig tail screws minimum 80mm are utilised to secure the collar through to the Ablative Coated Batt.
16. Repeat for the other side of the wall if required.
Installation of FIREPRO® Pipe Collar CE in floors

1. Floors shall be a minimum thickness of 150mm or greater.
2. Concrete, aerated concrete or masonry floors shall have a minimum density of 650kg/m³.
3. All floors shall have at least the same fire resistance as that required of the sealing system.
4. Services penetrating the division shall be suitably supported via steel angles, hangers or channels, no further than 400mm from the upper surface of the floor.
5. Check services to be treated are within scope of test data.
6. All services and apertures need to be thoroughly clean and clear of dust and loose particles.
7. Temperature to be 5°C or above at time of installation.
8. Gaps of up to 10mm wide around the service within the substrate can be filled with a minimum 5mm deep FIREPRO® Acoustic Intumescent Sealant.
9. For gaps greater than 10mm wide, ROCKWOOL Firestop compound can be used.
10. Fixing straps on the FIREPRO® Pipe Collar CE are opened up and the collar is simply fitted around the plastic pipe with the fixing tabs closest to the soffit of the floor.
11. Lock the FIREPRO® Pipe Collar CE around the pipe by closing the fixing strap. The collar is pushed flush to the soffit of the floor.
12. The collar is then securely fastened to the substrate by means of fire rated fixings to suit the substrate and installed through the fixing tabs.

Specification clauses

FIREPRO® Pipe Collar CE is associated with the following NBS Clauses:

P12 Fire stopping systems
- 380 Pipe collar: Surface mounted intumescent
FIREPRO®
Intumescent Pipe Wraps CE

Advantages
- Simple to install with no mechanical fixings required
- Available to suit pipe diameters up to 250mm O.D.
- Up to EI120 fire resistance
- Tested in conjunction with Ablative Coated Batt seals
- Maintenance free
- Dry system
- Water resistant

Description
Intumescent Pipe Wraps CE are designed to seal service penetrations in apertures containing combustible plastic pipes. Pipe Wraps CE comprise layers of a graphite based intumescent sheet encapsulated in a polythene sheath. All Pipe Wraps CE are supplied in correct lengths to suit the pipe diameter.

Intumescent Pipe Wraps CE are tested to plastic services penetrating flexible and rigid wall constructions, rigid floors and in Ablative Coated Batt seals.

Pipe Wraps CE are tested with end capping configurations that cover U/C pipes.

Performance
Fire performance
ROCKWOOL Intumescent Pipe Wraps CE can provide up to 2 hours fire protection to plastic pipework where it passes through fire rated walls and floors.

Table 1: BS EN 1366-3:2009 - 150mm Rigid Floor
Pipe Wraps installed within both sides of rigid floor min. 150mm thickness (see Figure 1 below)

<table>
<thead>
<tr>
<th>Service type</th>
<th>Wall thickness (mm)</th>
<th>Pipe diameter (mm)</th>
<th>Integrity</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>1.8 - 9.6</td>
<td>32 - 200</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>1.8 - 7.7</td>
<td>32 - 200</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>1.8</td>
<td>32 - 50</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>PP</td>
<td>2.9 - 18.2</td>
<td>32 - 200</td>
<td>120</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>2.9</td>
<td>32 - 50</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>HDPE</td>
<td>2.9 - 11</td>
<td>32 - 200</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

Table 2: BS EN 1366-3:2009 - 100mm Rigid or Flexible Wall
Fitted flush both sides of rigid or flexible wall min. 100mm thick (see Figure 2 above)

<table>
<thead>
<tr>
<th>Service type</th>
<th>Wall thickness (mm)</th>
<th>Pipe diameter (mm)</th>
<th>Integrity</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>1.8 - 9.6</td>
<td>32 - 200</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>PP</td>
<td>2.9 - 18.2</td>
<td>32 - 200</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>HDPE</td>
<td>2.9 - 18.4</td>
<td>32 - 200</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

Applications
- Fire stopping plastic pipe penetrations in rigid/flexible walls and rigid floors
- Can be applied to PVC, UPVC, Polypropylene, PE & HDPE pipe materials
All pipes tested according to EN 1366-3 have been tested with a specific pipe end configuration. All pipes have been tested U/C and are suitable for C/C pipe end configurations.

The EN test standard EN 1366-3 states, “it is important to ensure that sealing systems have been tested with appropriate pipe end conditions.”

The specification of pipe closure devices will be determined based on the scope of test data and whether the pipework is ventilated or not.

<table>
<thead>
<tr>
<th>Service type</th>
<th>Wall thickness (mm)</th>
<th>Pipe diameter (mm)</th>
<th>Integrity</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>2.9 - 18.4</td>
<td>50 - 200</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>PP</td>
<td>1.8 - 9.6</td>
<td>50 - 200</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>PE</td>
<td>2.9 - 18.2</td>
<td>50 - 200</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

Installation

The product is intended to be wrapped around the outside diameter of the pipework and is secured by means of a self-adhesive strip.

Apertures or core holes in the separating element shall be maximum oversize with respect to the pipe diameter as follows:

- 32mm - 50mm OD = 4mm
- 160mm OD = 10mm
- 200mm OD = 12mm
- 250mm OD = 14mm

The Intumescent Pipe Wrap CE is then positioned each side within the compartment wall or floor so that the edge of the product is left exposed at the face of the wall or soffit. The remaining annular space/gap shall be infilled using FIREPRO® Acoustic Intumescent Sealant or for larger void sizes, the Intumescent Pipe Wrap CE can be sealed into the structure with ROCKWOOL Firestop Compound (see Figures 4 & 5 below).

Under fire conditions, the intumescent material expands against the structure and fills the void left by the burnt out plastic.

Where pipes are insulated, please refer to the Insulated Fire Sleeve data sheet.

Intumescent Pipe Wraps CE are used to prevent fire penetration in plastic pipes that pass through fire rated walls and floors for a specified period of up to 2 hours.

They are manufactured as a sealed unit to the correct length and width to suit the pipe diameter and fire rating.

Walls should be a minimum of 100mm thickness and floors a minimum 150mm thickness. All walls should have the same or improved period of fire resistance as that required of the sealing system.

Services should be supported no further than 400mm from the surface of the separating element for walls and 400mm above the surface of the floor.

Figure 3
Pipe Wrap CE in FIREPRO® Ablative Coated Batt Wall seal

Figure 4
Intumescent Pipe Wrap CE sealed into compartment floor with ROCKWOOL Firestop Compound

Figure 5
Intumescent Pipe Wrap CE sealed into a compartment wall with ROCKWOOL Firestop Compound
Installation instructions
1. Check that the pipe surface is clean and clear of debris, dust or loose particles.
2. Aperture temperature should be 5°C or greater at time of installation.
3. Ensure that the appropriate Pipe Wrap CE is installed to suit the outside pipe diameter and required fire rating.
4. An annular space will be required around the service to allow sufficient installation depth.
5. Wrap around pipe and fix with integral self-adhesive strip. Ensure that when installing the Pipe Wrap CE to the pipework, that it is installed 5mm proud of the substrate’s surface.
6. For larger voids, the Pipe Wrap CE can be sealed into the structure with ROCKWOOL Firestop Compound.
7. Slide into position ensuring that both edges are exposed either side of walls and floors.
8. Annular gaps or spaces present after installation of the Pipe Wrap CE can be infilled using FIREPRO® Acoustic Intumescent Sealant.

Technical information
Standards and approvals
FIREPRO® Intumescent Pipe Wraps CE have been tested to BS EN 1366-3:2009. FIREPRO® Intumescent Pipe Wraps CE are third party accredited through Certifire.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe diameter</td>
<td>Up to 250mm O.D.</td>
</tr>
<tr>
<td>Width</td>
<td>40mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>2mm at 32mm, up to 12mm at 250mm</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 2 hours</td>
</tr>
<tr>
<td>Density</td>
<td>1.2g/cm³</td>
</tr>
<tr>
<td>Expansion rate</td>
<td>20:1</td>
</tr>
<tr>
<td>Application temp.</td>
<td>-5 to 40°C</td>
</tr>
<tr>
<td>Shelf life</td>
<td>N/A if stored indoors in a cool, dry, well ventilated area</td>
</tr>
</tbody>
</table>

Specification clauses
ROCKWOOL Intumescent Pipe Wraps CE are associated with the following NBS clauses:

- P12 Fire stopping systems
 - 375 Pipe Collar – Insulated Wrap
Fire stopping: Section 1 - Penetration seals

FIREPRO® Insulated Fire Sleeves

Advantages
- Quick, simple and accurate installation
- Maintains pipe insulation at penetration points
- Supplied with integral vapour barrier
- No mastic or ancillaries required
- Excellent thermal and acoustic insulation

Description
Insulated Fire Sleeves are a unique combination of ROCKWOOL stone wool and graphite intumescent. Supplied with a factory applied reinforced aluminium foil facing. When thermally insulated plastic pipes pass through fire resisting walls and floors, the insulation is normally removed at the point of penetration to enable standard pipe collars and wraps to close the resulting void when the plastic softens and melts due to the effects of a fire. However, the removal of this insulation may result in the formation of condensation on cold pipework or heat loss from hot pipes. Insulated Fire Sleeves avoid this problem by providing both fire stopping and thermal insulation in a single product. Insulated Fire Sleeves are intended for use on copper, steel and most types of plastic pipes, trunking and conduits to provide up to 2 hours fire resistance.

Insulated Fire Sleeves can be used on numerous division types and under fire attack, expand both inwards to choke the plastic service penetration and also outwards to seal gaps between the sleeve and the surrounding construction.

Applications
Insulated Fire Sleeves should be installed to the same thickness as the pipe insulation (min 25mm thick). For uninsulated pipes, a thickness of 25mm is required to maintain the fire resistance of the wall or floor.

Performance

Standards and approvals
Insulated Fire Sleeves have been independently tested and assessed to BS 476: Part 20 and/or EN 1366-3: 2009 for periods of up to 2 hours in concrete walls and floors, plasterboard partitions and ROCKWOOL Ablative Coated Batts.

Fire
Service Temperature and Limiting Service Temperature - Insulated Fire Sleeves are used to fire stop pipework operating at temperatures between 0°C and 180°C. At low temperatures, care should be taken to maintain the vapour barrier.

Table 1: Fire resistance (FR) performance - ducting, trunking and conduits

<table>
<thead>
<tr>
<th>Service type</th>
<th>Material</th>
<th>Min size (mm)</th>
<th>Max size (mm)</th>
<th>Wall thickness range (mm)</th>
<th>Supporting construction</th>
<th>FR integrity (minutes)</th>
<th>FR insulation (minutes)</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular</td>
<td>PVC</td>
<td>16 to 30</td>
<td>1.6 to 3</td>
<td>M/PB</td>
<td>Concrete</td>
<td>120</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>Square</td>
<td>PVC</td>
<td>3</td>
<td>M/PB</td>
<td>Concrete</td>
<td></td>
<td>120</td>
<td>90</td>
<td>1</td>
</tr>
<tr>
<td>Cable conduit</td>
<td>PVC</td>
<td>Up to 55</td>
<td>M/PB</td>
<td>Concrete</td>
<td></td>
<td>120</td>
<td>90</td>
<td>1</td>
</tr>
</tbody>
</table>

A minimum thickness of 25mm is required for uninsulated pipes. 25 to 100mm available to match insulation on other pipes.

Table 2: Fire resistance (FR) performance - metal and plastic pipes in masonry, plasterboard or concrete supporting construction

<table>
<thead>
<tr>
<th>Service type</th>
<th>Material</th>
<th>Min diameter</th>
<th>Max diameter</th>
<th>Wall thickness range (mm)</th>
<th>Supporting construction</th>
<th>FR integrity (minutes)</th>
<th>FR insulation (minutes)</th>
<th>Report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal pipes</td>
<td>Copper</td>
<td>22</td>
<td>165</td>
<td>M/PB</td>
<td>Concrete</td>
<td>120</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Mild steel</td>
<td>2.5</td>
<td>165</td>
<td>M/PB</td>
<td>Concrete</td>
<td>120</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Stainless steel</td>
<td>160</td>
<td>110</td>
<td>M/PB</td>
<td>Concrete</td>
<td>120</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>PVC/UPVC</td>
<td>30</td>
<td>3.0</td>
<td>M/PB</td>
<td>Concrete</td>
<td>120</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>PVC/UPVC</td>
<td>2.0</td>
<td>2.5</td>
<td>M/PB</td>
<td>Concrete</td>
<td>120</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polyethylene</td>
<td>2.0</td>
<td>2.5</td>
<td>M/PB</td>
<td>Concrete</td>
<td>120</td>
<td>120</td>
<td></td>
</tr>
</tbody>
</table>

1 = Chilt/A12245
2 = Chilt/A08152 Rev D
M = Masonry
PB = Plasterboard
CB = Ablative Coated Batt

A minimum thickness of 25mm is required for uninsulated pipes. 25 to 100mm available to match insulation on other pipes.
Table 3: Fire resistance (FR) performance of plastic pipes in FIREPRO® Ablative Coated Batt

<table>
<thead>
<tr>
<th>Service type</th>
<th>Material</th>
<th>Pipe outer diameter (mm)</th>
<th>Wall thickness (mm)</th>
<th>FR integrity (minutes) 50mm Coated Batt</th>
<th>FR insulation (minutes) 2 x 50mm Coated Batt</th>
<th>FR insulation (minutes) 50mm Coated Batt</th>
<th>FR insulation (minutes) 2 x 50mm Coated Batt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipes (plastic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polybutylene</td>
<td>15-28</td>
<td>2.5</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>HDPE</td>
<td>40</td>
<td>3</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>PVC</td>
<td>43</td>
<td>1.8</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>PVC</td>
<td>55</td>
<td>2</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>HDPE</td>
<td>56</td>
<td>2.3</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>ABS</td>
<td>57</td>
<td>4</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>PVC, PVCu</td>
<td>82</td>
<td>3.2-4.0</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>HDPE</td>
<td>90</td>
<td>3.5</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>PVC, PVCu</td>
<td>110</td>
<td>4.3</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>HDPE</td>
<td>110</td>
<td>5</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>ABS</td>
<td>110</td>
<td>5</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>PVC, PVCu</td>
<td>160</td>
<td>3.2-4.5</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>HDPE</td>
<td>160</td>
<td>6.2</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>ABS</td>
<td>160</td>
<td>6.7</td>
<td>60</td>
<td>120</td>
<td>60</td>
<td>120</td>
<td>60</td>
</tr>
</tbody>
</table>

For information regarding alternative pipe sizes or types, or for help regarding achieving higher integrity and insulation ratings. Please contact ROCKWOOL Technical Solutions Team for further assistance.

Acoustics

The use of Insulated Fire Sleeves can considerably reduce the noise emission from noisy pipework. ROCKWOOL Insulated Fire Sleeves have been tested to provide up to Rw 49 dB.

For higher standards of acoustic insulation, it is recommended that an increased length of the pipework either side of the compartment wall or floor is insulated with ROCKWOOL Techwrap 2 or Techtube.

Product information

Dimensions

Insulated Fire Sleeves are supplied 300mm long. They are manufactured to fit a range of standard pipe sizes, from 17mm to 169mm O.D. and in a standard thickness of 25mm. Other pipe sizes and thicknesses may be available to special order.

Installation

Installation instructions

Insulated Fire Sleeves are supplied 300mm long and are simply cut to the desired length and as a minimum, be cut flush with both faces of the wall/floor. When used in conjunction with PVC services or ROCKWOOL Ablative Coated Batt, they are required to extend beyond the face of the wall/floor. For details of how far they need to extend please refer to specification clause 2.

Maintenance

To maintain thermal efficiency, the Insulated Fire Sleeves should tightly abut any existing pipe insulation and where this is foil faced, all joints must be sealed with self-adhesive class O foil tape.

Other install info e.g. ancillaries

No specialist tools or ancillary materials are required for the fitting of Insulated Fire Sleeves. Insulated Fire Sleeves can accommodate irregularities in the division opening and the pipe O.D. of up to 15mm. Multiple pipe penetrations can be accommodated in conjunction with Ablative Coated Batt. A minimum thickness of 25mm is required for uninsulated pipes. Thicknesses of 25 to 100mm available to match insulation already installed on pipework. Manufactured to fit pipe diameters of 15 to 169mm.

Specification clauses

1. Supporting construction designation:- Floors: Cast concrete between 1100 and 2400kg/m² density
 M=Masonry between 600 and 1500kg/m² density.
 PB= Plasterboard clad steel or timber stud partitions with fire resistance at least the same as the Fire Sleeve performance.
 CB= ROCKWOOL 50 or 60mm thick Ablative Coated Batt.
2. Insulated Fire Sleeves should project by at least 25mm beyond the visible face of each Coated Batt. There must be at least 50mm width of Coated Batt between any fire sleeve and the edge of the aperture and also between individual Fire Sleeves.
3. If gaps exceed 15mm around the aperture and the sleeve, the gap should be filled with ROCKWOOL Acoustic Intumescent or FIREPRO® Firestop Compound. If gaps exceed 8mm between the service and the sleeve, these can be infilled, locally where the service penetrates the aperture, with the Acoustic Intumescent Sealant.
4. The installed length of any Insulated Fire Sleeve shall be at least 60mm.

NBS clauses

FIREPRO® Insulated Fire Sleeves are associated with the following NBS clauses:

- P12 Fire stopping systems
 - 375 Pipe Collar – Insulated Wrap
Intumescent Pipewrap Roll

Description

Intumescent Pipewrap Roll comprises an intumescent material made from elastomeric thermoplastic polymers combined with active components that provide a high volume expansion and pressure seal in the event of a fire.

Intumescent Pipewrap Roll is supplied on a 25m roll. The product is 40mm wide and 2mm thick, with integral adhesive tape for securing around the pipe. Depending on the service to be protected and the fire resistance required, multiple layers of wrap may be required, the exact number and positioning of the product is detailed in the performance section of this data sheet.

Advantages

- Simple to install
- No mechanical fixings required
- Water resistant
- Maintenance free
- Supplied as a 25m long roll in box dispenser
- Available to suit pipes up to 200mm o.d.
- Comprehensively tested
- Available from stock

Applications

Install Intumescent Pipewrap Roll to provide up to 4 hours fire protection to tested plastic pipework and insulated pipes where they pass through fire rated walls and floors. Installation to be fully in accordance with manufacturer’s instructions.

Installation

The product is intended to be wrapped around the outside diameter of combustible pipework or the outside diameter of insulation on pipework and is secured by means of the integral self-adhesive strip.

1. Check that pipe surface and substrate are clean and clear of any debris.
2. Install the correct number of wraps for the service type and ensure the correct number of layers of wrap as detailed in the performance section of this data sheet.
3. Install the wrap into the wall or floor recessed by 5mm from the face of the wall or floor.
4. Fill the annular space with ROCKWOOL® FIREPRO® Acoustic Intumescent Sealant to seal off the 5mm gap to the edge of the substrate.
5. Maintain a record of the installation.

Under fire conditions, the intumescent material expands against the structure and fills the void left by the burnt out plastic and/or insulation.

Maintenance

During normal use, no maintenance is required.

Technical information

Table 1: Pipes through suitable flexible walls

<table>
<thead>
<tr>
<th>Service type</th>
<th>Diameter (ø) (mm)</th>
<th>Wall thickness (mm)</th>
<th>Insulation type and thickness (mm)</th>
<th>Insulation fitting</th>
<th>Wall / floor type</th>
<th>Annular space (mm)</th>
<th>Depth (mm)</th>
<th>No. of layers</th>
<th>Supports</th>
<th>Capping</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC ≤200</td>
<td>≤9.6</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>100mm flexible wall</td>
<td>Thickness of wrap</td>
<td>40 @</td>
<td>See table 5 in data sheet</td>
<td>400mm & 500mm</td>
<td>U/C</td>
<td>EI120</td>
</tr>
<tr>
<td>PP ≤200</td>
<td>≤18.2</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>100mm flexible wall</td>
<td>Thickness of wrap</td>
<td>40 @</td>
<td>See table 5 in data sheet</td>
<td>400mm & 500mm</td>
<td>U/C</td>
<td>EI120,E110</td>
</tr>
<tr>
<td>PE ≤200</td>
<td>≤19.4</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>100mm flexible wall</td>
<td>Thickness of wrap</td>
<td>40 @</td>
<td>See table 5 in data sheet</td>
<td>400mm & 500mm</td>
<td>U/C</td>
<td>EI90</td>
</tr>
<tr>
<td>PE 50</td>
<td>≤4.6</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>100mm flexible wall</td>
<td>Thickness of wrap</td>
<td>40 @</td>
<td>See table 5 in data sheet</td>
<td>400mm & 500mm</td>
<td>U/C</td>
<td>EI120</td>
</tr>
<tr>
<td>PE 200</td>
<td>18.4</td>
<td>N/A</td>
<td>N/A</td>
<td></td>
<td>100mm flexible wall</td>
<td>Thickness of wrap</td>
<td>40 @</td>
<td>See table 5 in data sheet</td>
<td>400mm & 500mm</td>
<td>U/C</td>
<td>EI120</td>
</tr>
</tbody>
</table>
Table 2: Pipes in concrete floors

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Diameter (mm)</th>
<th>Pipe wall thickness (mm)</th>
<th>Insulation type and thickness (mm)</th>
<th>Insulation fixing</th>
<th>Wall / floor type</th>
<th>Ammular space (mm)</th>
<th>Depth (mm)</th>
<th>No. of layers</th>
<th>Supports</th>
<th>Capping</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC</td>
<td>≤200</td>
<td>≥9.6</td>
<td>N/A</td>
<td>N/A</td>
<td>Rigid floor</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>See table</td>
<td>E960</td>
<td>E120</td>
</tr>
<tr>
<td>PVC</td>
<td>≥200</td>
<td>≥9.6</td>
<td>N/A</td>
<td>N/A</td>
<td>Rigid floor</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>See table</td>
<td>E960</td>
<td>E120</td>
</tr>
<tr>
<td>PE</td>
<td>50</td>
<td>2.9</td>
<td>N/A</td>
<td>N/A</td>
<td>Flexible floor</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>See table</td>
<td>E960</td>
<td>E120</td>
</tr>
<tr>
<td>PE</td>
<td>18.2</td>
<td>2.9</td>
<td>N/A</td>
<td>N/A</td>
<td>Flexible floor</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>See table</td>
<td>E960</td>
<td>E120</td>
</tr>
<tr>
<td>PE</td>
<td>≥200</td>
<td>≥11.4</td>
<td>N/A</td>
<td>N/A</td>
<td>Flexible floor</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>See table</td>
<td>E960</td>
<td>E120</td>
</tr>
<tr>
<td>PVC</td>
<td>≥200</td>
<td>≥9.6</td>
<td>N/A</td>
<td>N/A</td>
<td>Flexible floor</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>See table</td>
<td>E960</td>
<td>E120</td>
</tr>
<tr>
<td>PVC</td>
<td>9.6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Flexible floor</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>See table</td>
<td>E960</td>
<td>E120</td>
</tr>
<tr>
<td>PVC</td>
<td>50</td>
<td>2.7</td>
<td>N/A</td>
<td>N/A</td>
<td>Flexible floor</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>See table</td>
<td>E960</td>
<td>E120</td>
</tr>
<tr>
<td>PVC</td>
<td>2.4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>Flexible floor</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>See table</td>
<td>E960</td>
<td>E120</td>
</tr>
<tr>
<td>PE</td>
<td>≥200</td>
<td>≥18.2</td>
<td>N/A</td>
<td>N/A</td>
<td>Flexible floor</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>See table</td>
<td>E960</td>
<td>E120</td>
</tr>
<tr>
<td>PE</td>
<td>≥50</td>
<td>≥6.9</td>
<td>N/A</td>
<td>N/A</td>
<td>Flexible floor</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>See table</td>
<td>E960</td>
<td>E120</td>
</tr>
<tr>
<td>PE</td>
<td>≥200</td>
<td>≥18.2</td>
<td>N/A</td>
<td>N/A</td>
<td>Flexible floor</td>
<td>40</td>
<td>50</td>
<td>40</td>
<td>See table</td>
<td>E960</td>
<td>E120</td>
</tr>
</tbody>
</table>

Table 3: Pipes in suitable flexible wall using pattress installation of 50mm FIREPRO® ACB

<table>
<thead>
<tr>
<th>Service Type</th>
<th>Diameter (mm)</th>
<th>Pipe wall thickness (mm)</th>
<th>Insulation type and thickness (mm)</th>
<th>Insulation fixing</th>
<th>Wall / floor type</th>
<th>Ammular space (mm)</th>
<th>Depth (mm)</th>
<th>No. of layers</th>
<th>Supports</th>
<th>Capping</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper / steel</td>
<td>≤108</td>
<td>≤14.2</td>
<td>Elastomer ic 13-25</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>≤108</td>
<td>≤14.2</td>
<td>Phenolic 25-40</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>42</td>
<td>1</td>
<td>Phenolic 25-40</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>≤108</td>
<td>≤14.2</td>
<td>Elastomer ic 13-25</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>42</td>
<td>1</td>
<td>Phenolic 25-40</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>≤108</td>
<td>≤14.2</td>
<td>Elastomer ic 13-25</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>42</td>
<td>1</td>
<td>Phenolic 25-40</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>≤108</td>
<td>≤14.2</td>
<td>Elastomer ic 13-25</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>42</td>
<td>1</td>
<td>Phenolic 25-40</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>≤108</td>
<td>≤14.2</td>
<td>Elastomer ic 13-25</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>42</td>
<td>1</td>
<td>Phenolic 25-40</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>≤108</td>
<td>≤14.2</td>
<td>Elastomer ic 13-25</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>42</td>
<td>1</td>
<td>Phenolic 25-40</td>
<td>CS</td>
<td>Flexible wall</td>
<td>40</td>
<td>2</td>
<td>2 layers</td>
<td>3mm</td>
<td>E120</td>
<td>E90</td>
</tr>
</tbody>
</table>
Table 4: Pipes in suitable flexible walls in double layer 50mm FIREPRO® ACB

<table>
<thead>
<tr>
<th>Service type</th>
<th>Diameter (ø) (mm)</th>
<th>Pipe wall thickness (mm)</th>
<th>Insulation type</th>
<th>Insulation thickness (mm)</th>
<th>Class</th>
<th>Substrate</th>
<th>Wrap dimensions</th>
<th>Supports</th>
<th>Capping</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper / steel</td>
<td>≤159</td>
<td>≤14.2</td>
<td>Elastomeric</td>
<td>≤13-25</td>
<td>CS</td>
<td>100 min flexible wall</td>
<td>Thickness of wrap</td>
<td>40</td>
<td>2 Layers of 2mm</td>
<td>EI60</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>≤108</td>
<td>≤14.2</td>
<td>Phenolic</td>
<td>25-40</td>
<td>CS</td>
<td>100 min flexible wall</td>
<td>Thickness of wrap</td>
<td>40</td>
<td>2 Layers of 2mm</td>
<td>EI120, EI60</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>42</td>
<td>1</td>
<td>Elastomeric</td>
<td>≤13-25</td>
<td>CS</td>
<td>100 min flexible wall</td>
<td>Thickness of wrap</td>
<td>40</td>
<td>2 Layers of 2mm</td>
<td>EI120, EI90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>42</td>
<td>1</td>
<td>Phenolic</td>
<td>25-40</td>
<td>CS</td>
<td>100 min flexible wall</td>
<td>Thickness of wrap</td>
<td>40</td>
<td>2 Layers of 2mm</td>
<td>EI120, EI90</td>
</tr>
<tr>
<td>PVC</td>
<td>≤110</td>
<td>≤6.6</td>
<td>Phenolic</td>
<td>20-25</td>
<td>CS</td>
<td>100 min flexible wall</td>
<td>Thickness of wrap</td>
<td>40</td>
<td>See table 5 in data sheet</td>
<td>EI90</td>
</tr>
<tr>
<td>PVC</td>
<td>≤110</td>
<td>≤6.6</td>
<td>Elastomeric</td>
<td>≤13-25</td>
<td>CS</td>
<td>100 min flexible wall</td>
<td>Thickness of wrap</td>
<td>40</td>
<td>See table 5 in data sheet</td>
<td>EI90</td>
</tr>
<tr>
<td>Copper / steel</td>
<td>≤159</td>
<td>≤14.2</td>
<td>Mineral wool</td>
<td>20-50</td>
<td>CS</td>
<td>100 min flexible wall</td>
<td>Thickness of wrap</td>
<td>40</td>
<td>2 Layers of 2mm</td>
<td>EI90</td>
</tr>
</tbody>
</table>

Key
- **ACB** = Ablative Coated Batt
- **CS** = Continuous Sustained
- **Φ** = applied to both faces of seal
- **Ϯ** = applied to upper face only
- **U/C** = Upcapped / Capped

Table 5: Wrap configuration by size

<table>
<thead>
<tr>
<th>Pipe O.D. (mm)</th>
<th>No. of layers of wrap</th>
<th>Total wrap thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>55</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>63</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>75</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>82</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>90</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>110</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>125</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>160</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 6: Physical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>40mm</td>
</tr>
<tr>
<td>Length</td>
<td>25m</td>
</tr>
<tr>
<td>Thickness</td>
<td>2mm</td>
</tr>
<tr>
<td>Density</td>
<td>1.3kg/m³</td>
</tr>
<tr>
<td>Volume expansion at 300°C</td>
<td>25 times</td>
</tr>
<tr>
<td>Shelf life</td>
<td>60 months</td>
</tr>
</tbody>
</table>
FIREPRO® High Expansion Intumescent Sealant

Advantages
- Simple solution for sealing combustible pipes and metal pipes with combustible insulation
- Suitable for both walls and floors
- Compatible with cPVC pipes
- Tested in multiple substrates

Description
ROCKWOOL FIREPRO® High Expansion Intumescent Sealant is water based acrylic sealant containing graphite. In the event of a fire, the active components provide a high volume expansion and pressure seal, closing off the void left by combustible materials.

ROCKWOOL FIREPRO® High Expansion Intumescent Sealant is supplied in 310ml cartridges.

Applications
FIREPRO® High expansion Intumescent Sealant is comprehensively tested for a wide range of applications which include:
- Combustible pipes
- Metal pipes insulated with combustible insulation
- Other permanent services

Performance

Standards and approvals
FIREPRO® High Expansion Intumescent Sealant has been tested to BS EN 1366-3: 2009 and BS EN 1366-4: 2006 +A1:2010 and classified to EN 13501-2, providing up to 4 hours fire protection in joints up to 30mm.

FIREPRO® High Expansion Intumescent Sealant has been CE marked against ETA0026-2.

“FBC™ System Compatible indicates that this product has been tested, and is monitored on an ongoing basis, to assure its chemical compatibility with FlowGuard Gold®, BlazeMaster® and Corzan® pipe and fittings. FBC™, FlowGuard Gold®, BlazeMaster® and Corzan® are licensed trademarks of The Lubrizol Corporation or its affiliates.”

FIREPRO® High Expansion Intumescent Sealant is third party accredited through IFC and Certifire.

This product has been authorised for use in LUL surface and sub-surface premises when installed in accordance with this datasheet - please refer to the LUL Approved Product Register website www.LU-apr.co.uk for specific details. LUL Ref. 2454.

Table 1: 2 hour dry wall (min. 120mm thick)

<table>
<thead>
<tr>
<th>Service penetration</th>
<th>Diameter (Ø)</th>
<th>Wall thickness</th>
<th>Annular space (mm)</th>
<th>Depth (mm)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cables</td>
<td>21</td>
<td>N/A</td>
<td>20</td>
<td>25Ø</td>
<td>EI 120 U/C</td>
</tr>
<tr>
<td>PVC pipes</td>
<td>40</td>
<td>3</td>
<td>10</td>
<td>25Ø</td>
<td>EI 120 U/C</td>
</tr>
<tr>
<td>PVC pipes</td>
<td>125</td>
<td>7.4</td>
<td>16</td>
<td>25Ø</td>
<td>EI 120 U/C</td>
</tr>
<tr>
<td>HDPE</td>
<td>63</td>
<td>7.2</td>
<td>20</td>
<td>25Ø</td>
<td>EI 120 U/C</td>
</tr>
<tr>
<td>HDPE</td>
<td>90</td>
<td>9.2</td>
<td>12.5</td>
<td>25Ø</td>
<td>EI 120 U/C</td>
</tr>
<tr>
<td>ABS</td>
<td>90</td>
<td>6</td>
<td>12.5</td>
<td>25Ø</td>
<td>EI 120 U/C</td>
</tr>
<tr>
<td>Copper / steel pipe with Armaflex 32mm CS</td>
<td>60</td>
<td>0.8-14.2</td>
<td>20</td>
<td>25Ø</td>
<td>EI 120/EI 90 U/C</td>
</tr>
<tr>
<td>Copper / steel pipes with Armaflex 16mm CS</td>
<td>15</td>
<td>0.8-7</td>
<td>15</td>
<td>25Ø</td>
<td>EI 120 U/C</td>
</tr>
</tbody>
</table>

Table 2: Wall with single 50mm FIREPRO® Ablative Coated Batt

<table>
<thead>
<tr>
<th>Service penetration</th>
<th>Diameter (Ø)</th>
<th>Wall thickness</th>
<th>Annular space (mm)</th>
<th>Depth (mm)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC pipes</td>
<td>125</td>
<td>7.4</td>
<td>20</td>
<td>50</td>
<td>EI 30 U/C</td>
</tr>
<tr>
<td>Multi layer composite pipes</td>
<td>110</td>
<td>10</td>
<td>20</td>
<td>50</td>
<td>E45 E50 U/C</td>
</tr>
<tr>
<td>500mm perforated cable tray*</td>
<td>N/A</td>
<td>N/A</td>
<td>20</td>
<td>50</td>
<td>EI 30</td>
</tr>
<tr>
<td>Medium cables*</td>
<td>47</td>
<td>N/A</td>
<td>20</td>
<td>50</td>
<td>EI 45</td>
</tr>
</tbody>
</table>

Table 3: Masonry wall (min. 150mm) or flexible wall (min. 100m) with double 50mm FIREPRO® Ablative Coated Batt

<table>
<thead>
<tr>
<th>Service penetration</th>
<th>Diameter (Ø)</th>
<th>Wall thickness</th>
<th>Annular space (mm)</th>
<th>Depth (mm)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC pipes</td>
<td>125</td>
<td>7.4</td>
<td>20</td>
<td>25Ø</td>
<td>EI 120 U/C</td>
</tr>
<tr>
<td>Multi layer composite pipes</td>
<td>110</td>
<td>10</td>
<td>20</td>
<td>25Ø</td>
<td>EI 120 U/C</td>
</tr>
<tr>
<td>500mm perforated cable tray*</td>
<td>N/A</td>
<td>N/A</td>
<td>20</td>
<td>25Ø</td>
<td>EI 120</td>
</tr>
<tr>
<td>Medium cables*</td>
<td>47</td>
<td>N/A</td>
<td>20</td>
<td>25Ø</td>
<td>EI 120</td>
</tr>
</tbody>
</table>
Fire stopping: Section 1 - Penetration seals

Table 4: Rigid floor (min. 150mm thick)

<table>
<thead>
<tr>
<th>Service penetration</th>
<th>Diameter (Ø)</th>
<th>Wall thickness</th>
<th>Annular space (mm)</th>
<th>Depth (mm)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical cables</td>
<td>80</td>
<td>N/A</td>
<td>N/A</td>
<td>25 1</td>
<td>E120</td>
</tr>
<tr>
<td>Non sheathed electrical cables</td>
<td>24</td>
<td>N/A</td>
<td>N/A</td>
<td>25 1</td>
<td>E180</td>
</tr>
<tr>
<td>Telecom cables bundled</td>
<td>up to 21</td>
<td>N/A</td>
<td>N/A</td>
<td>25 1</td>
<td>E180</td>
</tr>
<tr>
<td>Copper / steel pipe with Armaflex 32mm cs</td>
<td>159</td>
<td>14.2</td>
<td>20</td>
<td>25</td>
<td>EI 120/U/C</td>
</tr>
<tr>
<td>Copper / steel pipe with Armaflex 16mm cs</td>
<td>41</td>
<td>14.2</td>
<td>20</td>
<td>25</td>
<td>E240/ E1 60 U/C</td>
</tr>
<tr>
<td>PP pipes Ø</td>
<td>110</td>
<td>10.7</td>
<td>20</td>
<td>25</td>
<td>E120/U/C</td>
</tr>
<tr>
<td>PP pipes Ø</td>
<td>50</td>
<td>2.1</td>
<td>20</td>
<td>25</td>
<td>E240 U/C</td>
</tr>
<tr>
<td>PE pipe Ø</td>
<td>40</td>
<td>4.1</td>
<td>20</td>
<td>25</td>
<td>E120 U/C</td>
</tr>
<tr>
<td>PE pipe Ø</td>
<td>125</td>
<td>11.4</td>
<td>20</td>
<td>25</td>
<td>E120 U/C</td>
</tr>
<tr>
<td>PVC pipe Ø</td>
<td>40</td>
<td>2</td>
<td>20</td>
<td>25</td>
<td>E240 U/C</td>
</tr>
<tr>
<td>PVC pipe Ø</td>
<td>114</td>
<td>8.1</td>
<td>20</td>
<td>25</td>
<td>E120 U/C</td>
</tr>
</tbody>
</table>

Table 5: Rigid floor (min. 150mm thick) with double 50mm FIREPRO® Ablative Coated Batt

<table>
<thead>
<tr>
<th>Service penetration</th>
<th>Diameter (Ø)</th>
<th>Wall thickness</th>
<th>Annular space (mm)</th>
<th>Depth (mm)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC pipe Ø</td>
<td>50</td>
<td>7.4</td>
<td>20</td>
<td>25Φ</td>
<td>E120/U/C</td>
</tr>
<tr>
<td>PVC pipe Ø</td>
<td>125</td>
<td>7.4</td>
<td>20</td>
<td>25Φ</td>
<td>E120/U/C</td>
</tr>
<tr>
<td>Multi layer composite pipes</td>
<td>110</td>
<td>10</td>
<td>20</td>
<td>25Φ</td>
<td>E120/ E1 60 U/C</td>
</tr>
<tr>
<td>500mm perforated cable tray*</td>
<td>N/A</td>
<td>N/A</td>
<td>20</td>
<td>25Φ</td>
<td>E120</td>
</tr>
<tr>
<td>Medium cables*</td>
<td>47</td>
<td>N/A</td>
<td>20</td>
<td>25Φ</td>
<td>E120</td>
</tr>
<tr>
<td>Multi service as follows</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(installed centrally in aperture)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PE pipe Ø</td>
<td>125</td>
<td>7.6</td>
<td>N/A</td>
<td>25Φ</td>
<td>E120/ E1 90 U/C</td>
</tr>
<tr>
<td>60 pipe with cables Ø</td>
<td>21</td>
<td>N/A</td>
<td>N/A</td>
<td>25Φ</td>
<td>E120/ E1 90 U/C</td>
</tr>
</tbody>
</table>

Table 6: Linear joints

<table>
<thead>
<tr>
<th>Service penetration</th>
<th>Diameter (Ø)</th>
<th>Wall thickness</th>
<th>Annular space (mm)</th>
<th>Depth (mm)</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>PVC pipe Ø</td>
<td>50</td>
<td>7.4</td>
<td>20</td>
<td>25Φ</td>
<td>E120/U/C</td>
</tr>
</tbody>
</table>

Technical information

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form</td>
<td>Ready to use thixotropic paste</td>
</tr>
<tr>
<td>Cartridge size</td>
<td>310ml</td>
</tr>
<tr>
<td>Curing system</td>
<td>Water based</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>1.5</td>
</tr>
<tr>
<td>Extrusion rate</td>
<td>350gm/min</td>
</tr>
<tr>
<td>SAG</td>
<td><3min</td>
</tr>
<tr>
<td>Open time</td>
<td>30mins</td>
</tr>
<tr>
<td>Tack free time</td>
<td>60mins</td>
</tr>
<tr>
<td>Curing time</td>
<td>3 to 5 days</td>
</tr>
<tr>
<td>Shore (A) hardness</td>
<td>50</td>
</tr>
<tr>
<td>Solids</td>
<td>>80%</td>
</tr>
<tr>
<td>Application temperature range</td>
<td>+4°C to +35°C</td>
</tr>
<tr>
<td>Service temperature range</td>
<td>-15°C to 70°C</td>
</tr>
<tr>
<td>Shelf life</td>
<td>Up to 12 months when stored in unopened cartridges under cool, dry conditions. Avoid Extreme Temperatures</td>
</tr>
</tbody>
</table>

Installation

All surfaces must be clean and sound, free from dirt, grease and other contamination.

Prepare joint by cleaning as previously detailed and insert backer if required. Cut nozzle to the desired angle and gun firmly into the joint to give a good solid fill to the required depth. Strike off the sealant flush with the joint sides within five minutes of application, before surface skinning occurs. A small amount of shrinkage will occur on curing. If a flush finish is required, fill the joint slightly proud of the surface to allow for shrinkage.

Specification clauses

FIREPRO® High Expansion Intumescent Sealant is associated with the following NBS clauses:

- E40 Designed joints in in-situ concrete
- F30 Accessories / sundry items for brick / block stone walling
- L10 Windows / rooflights / screens / louvres
- L20 Doors / shutters / hatches
- P12 Fire stopping systems
- P395 Sealant: One part fire resisting acrylic

Important information

The sealant is not intended for application on bituminous substrates or substrates that can exude certain oils and plasticizers or solvents.

A high expansion intumescent sealant is different to standard intumescent sealants, it is tested and installed within a defined annular space between the service and the substrate. Please refer to the ROCKWOOL Standard Details for a complete list of tested systems.

The sealant is not recommended for submerged joints or areas exposed to high abrasion.

The sealant is not suitable for food contact or medical applications.
Fire stopping: Section 1 - Penetration seals

FIREPRO® SpeedSeal

Advantages
- Quick and Easy to install
- Up to E120/EI60 fire resistance
- 2 size options to suit the majority of small openings
- Ideal for refurbishment or new build

Description
There are many instances in buildings where single or small bunched cables and conduits will need to be positioned through compartment walls. It is important that even the smallest penetrating service is effectively fire stopped to reinstate the fire performance of the wall.
FIREPRO® SpeedSeal is a red putty-based penetration sealing solution available in 60mm and 100mm diameter discs. It has been tested in service openings 25mm x 25mm and 50mm x 50mm to seal penetrating services such as small metallic pipes, plastic pipes, cables and cable bunches.

Applications
Tested to reinstate the fire performance of rigid and flexible walls (minimum 100mm) where small cables and conduits penetrate.
Fire resistance testing to EN 1366-3 and proven to perform for up to EI 60.
Used to seal penetrations through service openings 25mm x 25mm and 50mm x 50mm.
Tested in conjunction with small/medium metallic pipes, plastic pipes, small/medium cables and cable bunches.
Can be used as a blank seal.

Performance
Fire performance
FIREPRO® SpeedSeal is specifically designed to be used around small cables, cable bunches, plastic and metallic conduits in flexible and rigid walls a minimum 100mm thickness. SpeedSeal has been proven by test to provide up to 120 minutes fire resistance (E120) around services.

60mm Diameter SpeedSeal

<table>
<thead>
<tr>
<th>Application</th>
<th>Service size (mm)</th>
<th>Service description</th>
<th>Aperture size (mm)</th>
<th>Wall type</th>
<th>Integrity</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank Seal</td>
<td>N/A</td>
<td>N/A</td>
<td>25 x 25</td>
<td>Flexible / Rigid</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td>Cable Penetration</td>
<td>14</td>
<td>Sheathed PVC</td>
<td>25 x 25</td>
<td>Flexible / Rigid</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Sheathed XPR/PO</td>
<td>25 x 25</td>
<td>Flexible / Rigid</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>Sheathed XLPE/EVA</td>
<td>25 x 25</td>
<td>Flexible / Rigid</td>
<td>120</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>Electrical Cables</td>
<td>25 x 25</td>
<td>Flexible / Rigid</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Medium Cables</td>
<td>≤ 21</td>
<td>Medium Sheathed PVC</td>
<td>25 x 25</td>
<td>Flexible / Rigid</td>
<td>120</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>≤ 27</td>
<td>Medium Sheathed PVC</td>
<td>25 x 25</td>
<td>Flexible / Rigid</td>
<td>120</td>
<td>45</td>
</tr>
</tbody>
</table>

Conduits
- Copper ≤ 16 > 1.2mm wall 25 x 25 Flexible / Rigid 120 20
- Steel ≤ 16 > 1.2mm wall 25 x 25 Flexible / Rigid 120 20
- Plastic ≤ 16 PVC ≥1.0mm wall 25 x 25 Flexible / Rigid 60 60

100mm Diameter SpeedSeal

<table>
<thead>
<tr>
<th>Application</th>
<th>Service size (mm)</th>
<th>Service description</th>
<th>Aperture size (mm)</th>
<th>Wall type</th>
<th>Integrity</th>
<th>Insulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blank Seal</td>
<td>N/A</td>
<td>N/A</td>
<td>50 x 50</td>
<td>Flexible / Rigid</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>Cable Penetration</td>
<td>3 x 14</td>
<td>Sheathed PVC</td>
<td>50 x 50</td>
<td>Flexible / Rigid</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>3 x 15</td>
<td>Sheathed XPR/PO</td>
<td>50 x 50</td>
<td>Flexible / Rigid</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td></td>
<td>3 x 14</td>
<td>Sheathed XLPE/EVA</td>
<td>50 x 50</td>
<td>Flexible / Rigid</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>0.21</td>
<td>Electrical Cables</td>
<td>50 x 50</td>
<td>Flexible / Rigid</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td>Medium Cables</td>
<td>≤ 21</td>
<td>Medium Sheathed PVC</td>
<td>50 x 50</td>
<td>Flexible / Rigid</td>
<td>60</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>≤ 27</td>
<td>Medium Sheathed PVC</td>
<td>50 x 50</td>
<td>Flexible / Rigid</td>
<td>60</td>
<td>45</td>
</tr>
</tbody>
</table>

Conduits
- Copper ≤ 16 > 1.2mm wall 50 x 50 Flexible / Rigid 60 15
- Steel ≤ 16 > 1.2mm wall 50 x 50 Flexible / Rigid 60 15
- Plastic ≤ 16 PVC ≥1.0mm wall 50 x 50 Flexible / Rigid 60 30
Technical Information

Standards & approvals
FIREPRO® SpeedSeal has been tested to BS EN 1366-3:2009
FIREPRO® SpeedSeal has been third party accredited through Certifire

Product properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
<th>Test standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application temp.</td>
<td>>5°C</td>
<td>-</td>
</tr>
<tr>
<td>Thickness</td>
<td>4mm</td>
<td></td>
</tr>
<tr>
<td>Colour</td>
<td>Red</td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>1.55-1.6 g/cm³</td>
<td>ISO 28111-1:2011</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 2 hours</td>
<td>EN 1366-3:2009</td>
</tr>
<tr>
<td>Expected shelf life</td>
<td>12 months</td>
<td>Store in dry conditions unopened</td>
</tr>
</tbody>
</table>

Installation

1. Walls shall be a minimum of 100mm thickness or greater.
2. Flexible drywalls/partitions shall comprise a minimum of 2 layers of ‘Type F’ Gypsum board on both faces, with minimum 50mm studs.
3. Solid block, masonry, aerated concrete and concrete shall have a minimum density of 450kg/m³ and a minimum thickness of 100mm.
4. All walls shall have at least the same fire resistance as that required of the sealing system.
5. Services penetrating the division shall be suitably supported via steel angles, hangers or channels, no further than 400mm from the surface of the sealing system on both faces.
6. Ensure that the aperture size is within the scope of test data, maximum 25mm x 25mm for 60mm diameter and 50mm x 50mm for 100mm diameter SpeedSeal disc.
7. Check services to be treated are within scope of test data.
8. All services and apertures need to be thoroughly clean and clear of dust and loose particles.
9. Temperature to be 5°C or above.
10. To install, peel protective layer from back of disc and apply SpeedSeal around service, ensuring a close fit.
11. Install with joint facing in the downwards position where possible.
12. Press into place with slight compression to ensure a tight fit.

Specification clauses

FIREPRO® SpeedSeal is associated with the following NBS clause:

P12 Fire stopping systems
 • 350 Intumescent Putty

The ROCKWOOL technical solution team are readily available to provide technical guidance and advice on any aspect of the FIREPRO® range.

For our full suite of Firestopping Standard Details, download the Standard Details Guide at: www.rockwool.co.uk/technical-resources/product-documentation
Concealed spaces or cavities within the construction of a building can provide a clear path for fire and smoke to spread. Cavity Barriers and Cavity Firestops provide two important functions:

Cavity barriers
Used to close the edges of cavities, around openings (e.g., windows) or to sub-divide extensive cavities/voids in accordance with building regulations.

Cavity firestops
Used to continue the fire resistance of a compartment floor or wall within a cavity space or void e.g., junction between a compartment floor and an external wall or above a compartment wall within a ceiling or roof void. It is important that the level of fire resistance achieved by the cavity firestop is equal to that of the compartment wall/floor.

Whether it’s single storey dwellings or multiple occupancy high rise buildings, ROCKWOOL provide a wide range of products and systems that have been tested for use as cavity barriers, cavity firestops or for use in both functions.

Useful documents and standards
- ASFP Red Book: Fire stopping and penetration seals for the construction industry
- ASFP: Ensuring best practice for passive fire protection in buildings
- ASFP: On-site guide to installing fire stopping
- BS 476-20: Fire test on building materials and structures. Method for determination of the fire resistance of elements of construction
- BS EN 1366-4: Fire resistance test for service installations. Linear joint seals
- BS EN 1366-4: Fire resistance test for service installations. Linear joint seals
- BS EN 1363-1: Fire resistance tests. General Requirements
- BS EN 13501-2: Fire classification of construction products and building elements. Classification using test data from resistance to fire tests, excluding ventilation services.

ASFP (Association for Specialist Fire Protection) guidance documents can be sourced at www.asfp.org.uk
Fire Barrier System

Description
ROCKWOOL Fire Barrier is comprised of stone wool and has a galvanised wire mesh which is stitched to one side. Foil faced options and double sided wire mesh are also available. Fire Barrier systems have been developed to prevent the spread of flames and inhibit heat and smoke through concealed spaces in buildings and improve sound reduction.

Advantages
- Patented ‘quick-fit’ system for up to 1 hour fire resistance
- Suitable for void heights up to 10.5 meters
- Provides airborne sound reduction
- Additional strength through wire mesh reinforcement
- Service penetration data available
- Fire resistance of up to 2 hours
- Flexible, accommodates movement

Applications
- Pitched roof voids
- Head of wall
- Concealed ceiling spaces
- Multiple substrates

Performance

Fire performance

<table>
<thead>
<tr>
<th>Rating required</th>
<th>Max drop without support frame</th>
<th>Max drop with additional support frame</th>
<th>Max width</th>
<th>Integrity</th>
<th>Insulation</th>
<th>Install specification</th>
<th>Supporting document</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 min cavity barrier</td>
<td>3m 10.5m 20m 30 60 15</td>
<td>Single 50mm layer FB, vertical joints butt jointed</td>
<td>116911</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30 min fire barrier</td>
<td>6m N/A 20m 60 30</td>
<td>Single 60mm layer (plain or foil face) with a minimum 100mm overlapped and stitched joints on vertical joints*</td>
<td>11970</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60 min fire barrier</td>
<td>6m 10.5m 20m 60 60</td>
<td>2 layers of 50mm back to back butt jointed with staggered vertical joints between the back to back layers.</td>
<td>116912</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 min fire barrier</td>
<td>3.5m 20m 90 90</td>
<td>51812</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120 min fire barrier</td>
<td>3.5m 9m 20m 120 120</td>
<td>2 layers of 60mm (plain or foil face) butt jointed, incorporating a 40mm air cavity between the layers.</td>
<td>44509</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: All stitching must be carried out using 0.9mm annealed and galvanised wire. Continuous wire stitching (100mm minimum) or separate lengths of wire secured by twisting ends together. Wire must penetrate through thickness of barrier.

Acoustic performance
The correct use of Fire Barrier within structural cavities and voids will reduce the level of transmitted sound. Where plasterboard ceilings are used, add 2-3dB to above performances.

<table>
<thead>
<tr>
<th>Room to room attenuation</th>
<th>R_{dB}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical lay-in grid suspended ceiling</td>
<td>30</td>
</tr>
<tr>
<td>Ceiling and 50mm ROCKWOOL Fire Barrier</td>
<td>42</td>
</tr>
<tr>
<td>Ceiling and 50mm ROCKWOOL Fire Barrier Foil Faced</td>
<td>44</td>
</tr>
<tr>
<td>Ceiling and 2x layers of 50mm ROCKWOOL Fire Barrier Foil Faced</td>
<td>50</td>
</tr>
</tbody>
</table>

Note: Values quoted are approximate
Technical information

Standard and approvals

Fire Barrier Systems have been independently tested and assessed to BS 476: Part 22 by UKAS accredited laboratories. ROCKWOOL Fire Barrier system achieves a reaction to fire classification of A1 as defined in BS EN 13501:1.

They are third party approved for performance and quality by the Loss Prevention Council Certification board (LPCB) and are listed in their Fire and Security ‘Red Book’ - certificate no. 022c.

The product has been authorised for use in LUL surface and sub-surface premises when installed in accordance with this data sheet - please refer to the LUL Approved Product Register website www.LU-apr.co.uk for specific details – LUL ref: 2230.

Product information

One or two sided foil face options available.

Wired mesh is available to both sides if required.

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>50mm</td>
<td>4000mm</td>
<td>1000mm</td>
</tr>
<tr>
<td>60mm</td>
<td>3500mm</td>
<td>1000mm</td>
</tr>
</tbody>
</table>

Installation

1/2 hour cavity barrier

Figures 4-9 show typical details for Fire barrier applied to a timber truss construction as a half hour cavity barrier within the roof section, to satisfy the requirements of building Regulation B3 - (4) i.e. 30 minutes fire integrity and 15 minutes fire insulation.

If the truss is constructed from a minimum timber size of 35 to 49mm thick, both sides of all truss members/bracing require protection from fire in order to minimise charring and retain strength. Figure 6 shows strips of 50mm Fire Barrier used on the reverse side of the truss (for this purpose). Nail plate fixings may fail prematurely in fire unless protected (see Figure 9).

The ROCKWOOL Fire Barrier Fixing System incorporates an angle support and clamping plate (up to one hour).

For fixing to timber, the ROCKWOOL clamping plate is used, compressing the barrier to the timber, fixed at 450mm centres using No. 10 woodscrews. To use the patented ROCKWOOL angle support system, bend tongues out to 90° and impale barrier onto them. The slotted clamping plate is then fitted by pushing the tongues through the slots, these are then bent over the face of the clamping plate completing the process.

Figure 4
Fire Barrier traverse to rafters

Figure 5
Half hour protection for timber truss construction 50mm thick or more.
Note: Nail plate protection required - see Figure 6.
Fire stopping: Section 2 - Cavity barriers & cavity firestops

Figure 6
Half hour protection for timber truss construction 35 to 49mm thick.

- **RWAS5**
 - Tiled or slated roof
 - 35-49mm thick timber trussed rafter

- 0.9mm wire stitching to secure strips to main barrier stitches typically 100mm long

- No. 10 wood screws (or large washer and screws) at maximum 450mm centres

- 50mm Fire Barrier

For fixing to concrete soffits (Figure 10-12), the pre-punched angle support is fixed using Hilti DBZ or Ejot ECL 35 hammer set anchors at max. 750mm centres. For fixing to steel purlins, use Hilti SMD 02Z (5.5 x 70mm) self-tapping screws at maximum 450mm centre.

Figure 10
50mm Fire Barrier fixed to concrete soffit.

Support angle fixed to soffit at max. 750mm centres

Figure 11
50mm Fire Barrier running across ribbed soffit - Section

RW clamping plate fixed at 450mm centres

Barrier cut and packed into troughs and wired to prevent uncoiling

Figure 12
Alternative fixing to flat soffit or perimeter, appropriate to barriers with a shallow drop

50mm Fire Barrier compressed between soffit and clamping plate at max 450mm centres

Hilti DBZ 6/4.5 or Ejot ECL 35 hammer set anchor

Figure 7
Head of partition

- ROCKWOOL Fire Barrier
- RW clamping plate
- No. 10 wood screws at max 450mm centres

- Head plate
- Ceiling board

Figure 8
Barrier fitted transversely to timber joisted ceiling

- Tongues fixed at max 300mm centres
- Angle support fixed to ceiling joists

Figure 9
Nail plate protection

25mm thick ROCKWOOL BeamClad fixed with FIREPROP Glue and nailed, or 50mm Fire Barrier secured with screws and large square washers. Use 50mm nails for BeamClad and 70mm screws for Fire Barrier.
60-30 fire barrier

If 30 minutes insulation is required, use 1 layer of 60mm plain or foil-faced fire barrier with 100mm vertical overlapped joints (Figure 13 & 14). The barrier is otherwise fixed for timber construction as previously shown on Figures 4-9.

Common details

Extended drops

ROCKWOOL 50mm Fire barrier single and double layers, can be extended from a 3.5m drop to a maximum 6m drop by fixing an additional 2.5m section, stitched with overlapped joints as per Figure 16. For additional guidance and drops in excess of 6m, please refer to Figure 31 and associated guidance.

Wire stitching of butt joints in ROCKWOOL Fire Barriers

Adjacent barriers must be closely butt jointed, or overlapped, and through stitched with 0.9mm galvanised annealed wire (see Figure 15). It is essential that the barrier provides a good seal at its head, perimeter and at all joints. Where the barrier abuts a profile such as a trapezoidal deck, the material must be cut to suit and secured to fire stop the gap (see Figure 17). For extended drops, 1.5mm diameter galvanised and annealed wire is used (see Figure 16).
Penetration details

It is regarded as good practice to adequately support or reinforce services penetrating compartment walls and cavity barriers, to prevent displacement. It is recommended that such supports should be no greater than 500mm from each face of the Fire Barrier.

To maintain the integrity of the Fire/Cavity Barrier when penetrated by services with a high melting point (such as steel or copper pipes, beams or trusses) the barrier is first cut locally to accommodate the service or structural member and then re-stitched as neatly as possible. The penetration is then tightly sleeved each side of the barrier to a minimum length of 300mm, using the same barrier material. Each sleeve should be securely stitched to the main barrier to produce a tight seal and prevent future detachment (see Figures 18 and 19). Where access is only available from one side, the double seal solution may be replaced by a single ‘collar’ detail - please contact our Technical Solutions Team for further advice.

If the penetrating service is manufactured from low melting point materials such as plastic or aluminium, then sleeving should be extended to at least 1000mm either side of the barrier.

This guidance applies to services such as pipes, sheathed cables and conduits, including those carried on steel trays.

For protected steel ductwork with a tested fire resistance performance (stability, integrity and insulation) at least the same as the Fire Barrier, 300mm sleeves should be applied either side of the main barrier, as for high melting point services above.

For information on achieving fire protection to steel ductwork, please refer to the ROCKWOOL Fire Duct System data sheet.

For non-fire protected ductwork, or that with a fire resistance performance less than the barrier, two sleeves should be applied to each side of the barrier, an inner sleeve of 1000mm and an outer sleeve of 300mm. All sleeves should be stitched to the main barrier.

The duct should also include an independently supported fire damper, located in the line of the main barrier. Reference should also be made to Approved Document B of England & Wales Building Regulations - Volume 1, Requirement B3, Section 7 and Volume 2, Requirements B3, Section 10.
Fixing To timber structure (1 hour)

When a 1 hour Fire Barrier is supported on structural timber (for example a trussed rafter), and the thickness of timber is 35-49mm, one layer of 60mm ROCKWOOL Fire Barrier must be placed on each side of the timber (see Figure 24). Where timber thickness is 50mm or greater, 2 layers of 50mm Fire Barrier are sufficient.

1.5 & 2 hour fire barriers

1.5 hour fire barrier

The ROCKWOOL 1.5 hour Fire Barrier system uses 2 layers of 50mm Fire Barrier with staggered joints fixed as Figures 25-27.

Note: Wire reinforced faces should be placed outwards.

2mm tested angle fixed to soffit at max 750mm centres (see Fig. 26)

Two layers of 50mm ROCKWOOL Fire Barrier, vertical joints staggered and stitched

Suspended ceiling

Fire-resisting wall

Concrete soffit

Two layers of 50mm ROCKWOOL Fire Barrier with vertical joints staggered

Suspended ceiling

Fire-resisting wall

Concrete soffit

2mm tested punched strap

Fire-resisting wall

Two layers of 50mm Fire Barrier with vertical joints staggered

Suspended ceiling

Fire-resisting wall

Concrete soffit

2mm tested punched strap

Fire-resisting wall

Two layers of 50mm Fire Barrier with vertical joints staggered

Suspended ceiling

Fire-resisting wall

Concrete soffit

2mm tested punched strap

Fire-resisting wall

Two layers of 50mm Fire Barrier with vertical joints staggered

Suspended ceiling

Fire-resisting wall

Concrete soffit

2mm tested punched strap
2 hour fire barrier

The ROCKWOOL 2-hour Fire Barrier (see Figures 28-30) consists of two layers of 60mm (plain or foil-faced), wire stitched Fire Barrier with staggered vertical joints, separated by a nominal 40mm air space. The base or perimeter to which the barrier is fixed must be capable of remaining in place for 2 hours.

Angle and strap for 1.5% and 2 hour fire barriers

The following specification for slotted angles and straps is suitable for supporting ROCKWOOL Fire Barriers for 1.5 and 2 hours when tested to BS 476: Part 22. Slotted angles (62 x 41 x 2mm) and straps (38 x 2mm) manufactured from mild steel conforming to BS 1449: Part 1:1991 and cold reduced to provide a minimum of 0.2% proof stress of 417 Mpa (27 tons/ in²) and conforming to BS 4345: 1968 (1986) - Specification for slotted angles (incl. flat strap).

Other installation information

General design considerations

A cavity fire barrier must be designed to restrict the passage of both hot smoke and flames for the minimum specified period, as listed in Approved Document B in support of the Building Regulations. In addition, it must be fixed in such a way that:

- It will remain effective in the event of structural movement
- There are no gaps where it abuts other elements of construction
- It complies with the requirements of Approved Document B of the Building Regulations

Extended drops

For periods of up to 60 minutes, ROCKWOOL Fire Barriers can be used for extended void heights between 3.5 and 6m without the need for a supported frame - see Figure 16 for joining barriers with overlap. For periods of up to 90 minutes, this drop height can be increased to 10.5m (9m for 120 minutes), by the use of a simple frame system constructed from slotted angles and straps (see Figure 31).

Further details are available from ROCKWOOL Technical Solutions Team.

Fire barriers and dampers

Where ROCKWOOL Fire Barriers are installed in conjunction with fire dampers, the dampers must be supported independently of the fire barrier. HVCA or ASFP publications may be helpful.

Access through barriers

Where regular access is required through the barriers for maintenance purposes etc, this should be achieved by the inclusion of an independently supported fire rated door set and frame. The Fire Barriers should be clamped to the door frame with the RW clamping plate and appropriate fixings at 450mm centres.
Ancillaries
ROCKWOOL ancillaries

ROCKWOOL Fire Barrier support angle and clamping plate are specially manufactured for ROCKWOOL.

Clamping plate:
3m x 40mm, 10 lengths per pack

Fire barrier support angles:
3m x 34mm x 75mm, 10 lengths per pack

Proprietary fixings
All steel hammer set expansion anchors for soffit fixings are available from Hilti, or Ejot. For perimeter fixings to concrete or masonry, use Hilti HUS Universal Screw system. For fixings to timber, use standard No. 10 steel wood screws 100mm long.

Durability
For durability, we recommend that the finish should be capable of withstanding at least 200 hours salt spray and 400 hours humidity corrosion resistance testing to BS 3990: Part F. Slotted angles and straps conforming to this specification are available from the following suppliers: JB Products Tel: 01384 240234 Link 51 Tel: 01952 682251 Romstor Tel: 01442 242261

If other hardware is used to support the barriers, we recommend that the respective specifier, supplier or installer should be certain that the chosen fixing system has been both tested and approved, for the required period of fire resistance and drop height.

Site advisory service
ROCKWOOL provides a site advisory service by engineers, solely employed to assist with advice when installing ROCKWOOL materials on site. The service is intended for site guidance, but is not intended to be an inspection facility unless agreed under a separately financed contract agreement.

For Approval of installed barriers, the installer or building owner will be referred to a suitably accredited and experienced fire assessor or fire safety engineering organisation.

Packaging of fire barrier
Shrink wrapped in polyethylene

Handling
ROCKWOOL Fire Barriers are easy to handle. It is easy to cut to any shape. The product should be stored indoors or under a weatherproof covering.

Maintenance
Once installed, ROCKWOOL Fire Barriers should need no maintenance. Fire Barriers should be inspected to ensure that they have not been disturbed during maintenance of areas and/or as part of a regular maintenance program.

Specifcation clauses
ROCKWOOL Fire Barrier System is associated with the following NBS clauses:

K10 Gypsum board dry linings / partitions / ceilings
- 530 – Cavity fire barriers within partitions/wall linings
- 545 – Cavity fire barriers within suspended ceilings

K40: Demountable suspended ceilings
- 287 – Cavity Barriers
- 425 – Installing cavity barriers
- 431 – Installing sound barriers

P10 Sundry insulation / proofing work
- 410 – Flexible cavity barriers
- 430 – Wired mineral wool small cavity barriers
- 440 – Fire protection
Fire Barrier Slab

Advantages
- Simple, butt-jointed and friction fit application
- No fixings, fasteners or angles required
- Suitable for closing voids of up to 1m in height and 20m in length
- Provides airborne sound reduction
- Service penetration data available
- Fire resistance of up to 4 hours integrity
- LUL approved in combination with ROCKWOOL LUL Intumescent Sealant

Description
ROCKWOOL Fire Barrier Slab comprises a high density stone wool core which is foil-faced on both sides. Fire Barrier slab has been developed to prevent the spread of flames, inhibit heat and smoke through concealed spaces in buildings and improve sound reduction.

Applications
- Head of wall
- Concealed voids
- Service penetrations

Performance

Fire performance
Achieves 240min integrity; 60 min insulation without service penetrations. Where service penetrations are present Fire Barrier slab can achieve 90min integrity, 60min insulation dependent on service penetration type. For further information of specific service penetration details please contact ROCKWOOL Technical Support.

Acoustic performance
ROCKWOOL Fire Barrier Slab has been tested in accordance with BS EN ISO 10140-2:2010 achieving Rw 23dB: Test Report No C/23667/701.

Technical Information

Standards and approvals
Fire Barrier Slab has been independently tested and assessed to BS 476: Part 20 and Part 22 by accredited laboratories.
ROCKWOOL Fire Barrier system achieves a reaction to fire classification of A1 as defined in BS EN 13501:1
They are third party approved for performance and quality by the Loss Prevention Council Certification board (LPCB) and are listed in their Fire and Security ‘Red Book’ - certificate no. 022cr/02.
The product has been authorised for use in LUL surface and sub-surface premises when installed in accordance with this data sheet - please refer to the LUL Approved Product Register website www.LUL-apr.co.uk for specific details – LUL ref: 2231.

Product information

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Length</th>
<th>Width</th>
</tr>
</thead>
<tbody>
<tr>
<td>100mm</td>
<td>1000mm</td>
<td>666mm</td>
</tr>
</tbody>
</table>
Fire stopping: Section 2 - Cavity barriers & cavity firestops

Installation
1. Fire Barrier Slab should be cut to the appropriate height and friction fitted within the opening.
2. ROCKWOOL Acoustic Intumescent Sealant or ROCKWOOL LUL Intumescent Sealant should then be applied to both the butt joints and perimeter of the barrier seal.

Service penetrations
ROCKWOOL Fire Barrier Slab can be penetrated by steel pipes of ≤ 33 mm external diameters and steel cable trays of ≤ 305mm x 50mm. Penetrating services must be independently supported by a maximum of 150mm from the face of the slabs.

Handling
ROCKWOOL Fire Barrier slab is easy to handle. It is easy to cut to any shape. The product should be stored indoors or under a weatherproof covering.

Maintenance
Once installed ROCKWOOL Fire Barrier Slab should need no maintenance. Fire Barrier Slab should be inspected to ensure that they have not been disturbed during maintenance of areas and/or as part of a regular maintenance program.

Preventing the spread of fire and smoke within concealed voids is essential for maintaining compartmentation in the event of a fire. To provide additional assurance of performance, ROCKWOOL Fire Barrier Systems have been certified by the LPCB and are listed in the LPCB Red Book (Certificate Number 022c)

Specification clauses
ROCKWOOL Fire Barrier Slab is associated with the following NBS clauses:

<table>
<thead>
<tr>
<th>K10 Gypsum board dry linings / partitions / ceilings</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 530 – Cavity fire barriers within partitions/wall linings</td>
</tr>
<tr>
<td>• 545 – Cavity fire barriers within suspended ceilings</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>K40: Demountable suspended ceilings</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 287 – Cavity Barriers</td>
</tr>
<tr>
<td>• 425 – Installing cavity barriers</td>
</tr>
<tr>
<td>• 431 – Installing sound barriers</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P10 Sundry insulation / proofing work</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 410 – Flexible cavity barriers</td>
</tr>
<tr>
<td>• 430 – Wired mineral wool small cavity barriers</td>
</tr>
<tr>
<td>• 440 – Fire protection</td>
</tr>
</tbody>
</table>
TCB & PWCB Cavity Barriers

Description
ROCKWOOL TCB & PWCB cavity barriers are manufactured from non-combustible stone wool, encapsulated within a resilient polythene sleeve which eliminates the need for weather protection during installation. The sleeves are also colour-coded to differentiate between the two products, TCB’s being red and PWCB’s white.

Advantages
- Easy to install
- Fire resistance up to 60 minutes (EI)
- Reduce acoustic flanking transmission
- Improves air leakage & heat loss
- Unaffected by building movement
- Suitable for vertical and horizontal applications
- Site durable & weather protected

Applications
ROCKWOOL TCB & PWCB Cavity barriers can be used in both vertical and horizontal applications, providing an effective fire, acoustic and thermal barrier within external wall cavities and separating party walls.

All ROCKWOOL Cavity barriers are 1200mm long and are designed to be compression fitted within the cavity (min 10mm-15mm compression). The barriers do not rely on the polythene flanges to hold them in place in the event of a fire. It is essential that the correct cavity barrier size is specified to suit the as-built cavity width. TCB & PWCB cavity barriers are available in a range of thicknesses to suit cavity widths (refer to the tables at the end of the data sheet for more information).

Figure 1
TCB

Figure 2
PWCB

Performance
Fire performance
The use of ROCKWOOL Cavity Barriers satisfies the requirements of:
- Approved Document B (Domestic) B3 - Section 6: Concealed spaces (Cavities)
- Approved Document B (Non-domestic) B3 - Section 9: Concealed spaces (Cavities)
- Scottish Technical Handbook Section 2 - Fire Section 2.4: Cavities

Table 1: PWCB

<table>
<thead>
<tr>
<th>Cavity width (mm)</th>
<th>PWCB size (mm)</th>
<th>Integrity (mins)</th>
<th>Insulation (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-55</td>
<td>200x65</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>75-80</td>
<td>200x90</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>90-100</td>
<td>200x110</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>101-110</td>
<td>200x120</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>111-120</td>
<td>200x130</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>121-130</td>
<td>200x140</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>131-140</td>
<td>200x150</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>141-150</td>
<td>200x160</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>
Table 2: TCB

<table>
<thead>
<tr>
<th>Cavity width (mm)</th>
<th>TCB size (mm)</th>
<th>Fire resistance per construction</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Timber to timber</td>
</tr>
<tr>
<td>50 - 55</td>
<td>65x65</td>
<td>30min integrity</td>
</tr>
<tr>
<td>56 - 65</td>
<td>75x75</td>
<td>60min integrity</td>
</tr>
<tr>
<td>75 - 80</td>
<td>90x90</td>
<td>60min integrity</td>
</tr>
<tr>
<td>90 - 100</td>
<td>110x110</td>
<td>60min integrity</td>
</tr>
<tr>
<td>101 - 110</td>
<td>120x120</td>
<td>60min integrity</td>
</tr>
<tr>
<td>111 - 120</td>
<td>130x130</td>
<td>60min integrity</td>
</tr>
<tr>
<td>121 - 130</td>
<td>140x140</td>
<td>60min integrity</td>
</tr>
<tr>
<td>131 - 140</td>
<td>150x150</td>
<td>60min integrity</td>
</tr>
<tr>
<td>141 - 150</td>
<td>160x160</td>
<td>60min integrity</td>
</tr>
</tbody>
</table>

Fire performance - BS EN 1366-4: 2006 +A1 2010 (TCB only)

Table 3: Wall

<table>
<thead>
<tr>
<th>Cavity size (mm)</th>
<th>TCB range (mm)</th>
<th>Masonry to masonry (mins)</th>
<th>Masonry to steel (mins)</th>
<th>Masonry to timber (mins)</th>
<th>Masonry to ROCKWOOL (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-285</td>
<td>65x65</td>
<td>30</td>
<td>30</td>
<td>60</td>
<td>120</td>
</tr>
</tbody>
</table>

Table 4: Floor

<table>
<thead>
<tr>
<th>Cavity size (mm)</th>
<th>TCB range (mm)</th>
<th>Masonry to masonry (mins)</th>
<th>Masonry to steel (mins)</th>
<th>Masonry to timber (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50-285</td>
<td>65x65</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
</tbody>
</table>

PWCB cavity barrier
All ROCKWOOL PWCB’s are 200mm wide, and are specifically designed for use at party wall/external wall cavity junctions. PWCB’s also achieve the requirements for fire safety, acoustic flanking and thermal bypass in one single product.

Thermal: party wall thermal bypass
PWCB meets the requirements for an effective party wall perimeter edge seal, by restricting air flow around the exposed edges of party wall cavities.

Fire: acts as an effective cavity barrier
PWCB is non-combustible and exceeds minimum fire resistance requirements for cavity barriers as set out within the Building Regulations.

Acoustic
ROCKWOOL PWCB provides an excellent acoustic absorber by reducing flanking transmission between adjoining properties, (as required by Approved Document E and Robust details). If installed correctly, ROCKWOOL PWCB will help minimise the thermal party wall bypass effect, by restricting air leakage and heat loss between the party wall cavity and the external cavity.

Thermal bypass effect
Approved Documents L1A & L2 A of England and Wales’s Building Regulations and Section 6 of Scotland’s Building standards (domestic), have recognised that considerable heat loss can occur where party wall cavities interface with external cavity walls. A key feature of a SAP calculation is that Building Regulations now assign a U-value of 0.5 W/m²K to be taken for a separating party wall cavity unless specific action is taken to improve its performance.

Ways to limit heat Loss
Perimeter edge sealing only: Thermal regulations allow a U-value of 0.20W/m²K to be claimed when effective perimeter edge sealing is used around all exposed edges of the party wall.

Perimeter edge sealing plus fully filling the party wall cavity
A U-value of zero can be claimed if the party wall cavity is fully filled with appropriate mineral wool insulation, and effective perimeter edge sealing is provided around all exposed edges.

Acoustic performance
ROCKWOOL TCB & PWCB Cavity Barriers comply with the generic description for cavity closers to prevent flanking noise transmission, along concealed cavities in both external and separating walls.

Table 5

<table>
<thead>
<tr>
<th>Cavity type in party wall</th>
<th>U-value claim for SAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unfilled cavity with no effective edge sealing</td>
<td>0.5 W/m²K</td>
</tr>
<tr>
<td>Unfilled cavity with effective edge sealing only</td>
<td>0.20 W/m²K</td>
</tr>
<tr>
<td>Fully filled cavity and effective edge sealing</td>
<td>0.00 W/m²K</td>
</tr>
</tbody>
</table>
Technical Information

Standards and approvals

TCB & PWCB Cavity Barriers have been tested and assessed BS476: Part 20: 1987 and can achieve a fire resistance rating of up to 60 minutes (EI).

TCB Cavity Barriers have been tested to BS EN 1366-4: 2006 +A1 2010 using the general principles of BS EN 1363-1:2012 achieving a fire resistance rating of up to 60 minutes (EI).

TCB & PWCB Cavity Barriers are manufactured using non-combustible stone wool which is classified A1 in accordance with BS EN 13501-1: 2007 +A1 2009.

TCB Cavity Barriers are third party approved for performance and quality by the Loss Prevention Council Certification Board (LPCB) and are listed in their Fire and Security ‘Red Book’ – certificate no: 022b (3).

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1200mm</td>
</tr>
<tr>
<td>Width</td>
<td>TCB – Up to 150mm / PWCB – 200mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>TCB – Up to 300mm / PWCB – Up to 160mm</td>
</tr>
<tr>
<td>Cavity sizes</td>
<td>TCB – Up to 285mm / PWCB – Up to 150mm</td>
</tr>
<tr>
<td>Reaction to fire</td>
<td>Euroclass A1 (ROCKWOOL Core)</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>60 minutes (EI)</td>
</tr>
</tbody>
</table>

Installation

All joints between adjacent cavity barriers and intersections should be closely butted to ensure that a continuous fire seal is maintained.

In vertical applications, both flanges of the Cavity Barrier can be fixed to the inner leaf at 150mm centres, using staples or clout nails prior to compression fitting by outer cavity wall.

In horizontal applications, only the top flange of the polythene sleeve should be fixed.

Fully filled cavities in external walls

Where the external wall cavity is fully filled external cavity barriers are generally not required in the outer wall.

Partially filled cavities in external walls

Where partial fill insulation is used in the external wall, the insulation should be cut back to permit the cavity barrier to be compression fitted between the inner and outer leaves. The head of the cavity wall should be closed at eaves level with the ROCKWOOL TCB Cavity Barrier.

Specification clauses

ROCKWOOL TCB & PWCB Cavity Barriers are associated with the following NBS clauses:

- F30 Accessories / sundry items for brick / block / stone walling
 - 180 Cavity Closers
- K10 Gypsum board dry linings / partitions / ceilings
 - 530 Cavity barriers within partitions/wall linings
- P10 Sundry insulation / proofing work
 - 420 Sleeved mineral wool small cavity barriers
Fire stopping: Section 2 - Cavity barriers & cavity firestops

FIREPRO® SP FireStop System

Advantages
- Easy to install, dry fit system
- Can accommodate limited movement
- Tested to provide up to 2 hours of fire resistance
- Resists the passage of smoke – aluminium foil faced on both sides
- Suitable for cavity widths up to 1000mm

Please contact ROCKWOOL Technical Solutions for fire resistance voids over 600mm wide, and for assistance with any other application enquiries.

Description
The ROCKWOOL SP FireStop System comprises of both the SP FireStop Slab, SP FireStop Plus Slab and SP FireStop fixing brackets. SP Slabs incorporate a foil facing to both sides which helpfully includes cutting lines to support accurate installation.

Applications
SP FireStop System may be installed horizontally or vertically and is suitable for cavity widths between 50mm and 600mm.* SP FireStop Plus can also be used horizontally in cavity widths up to 1000mm*. For further information please contact ROCKWOOL Technical Solutions.

SP FireStop System is suitable for:
- Masonry constructions
- Large cavity voids
- Rainscreen façades (vertical use only)*

SP FireStop System is not suitable for use as a horizontal fire barrier in ventilated façade systems. For these applications consider using the ROCKWOOL SP FireStop OSCB.

Performance

Standards and approvals
SP FireStop System has been tested and assessed to BS 476: Part 20. It has also been tested to BS EN 1366-4: 2006 and classified to BS EN 13501-2*.

Achieves Euroclass A1 in accordance with BS EN 13501-1.

SP FireStop System is 3rd party approved with Certifire ref: CF5836*.

This product has been authorised for use in LUL surface and sub-surface premises when installed in accordance with this datasheet. Please refer to the LUL Approved Product Register at www.LU-apr.co.uk for specific details. LUL Ref: 2244*.

Fire performance

The SP FireStop System can achieve a fire resistance rating of up to 2 hours in voids of up to 600mm.*

<table>
<thead>
<tr>
<th>Product</th>
<th>Fire resistance</th>
<th>Fire resistance</th>
<th>Fire resistance</th>
<th>Fire resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP60 FireStop Slab</td>
<td>EI60</td>
<td>EI60</td>
<td>EI60</td>
<td>EI60</td>
</tr>
<tr>
<td>SP120 FireStop Slab</td>
<td>EI120</td>
<td>EI120</td>
<td>EI120</td>
<td>EI120</td>
</tr>
<tr>
<td>SP60 FireStop Slab</td>
<td>EI60</td>
<td>EI60</td>
<td>EI60</td>
<td>EI60</td>
</tr>
<tr>
<td>SP120 FireStop Slab</td>
<td>EI120</td>
<td>EI120</td>
<td>EI120</td>
<td>EI120</td>
</tr>
<tr>
<td>SP120 FireStop Slab</td>
<td>EI120</td>
<td>EI120</td>
<td>EI120</td>
<td>EI120</td>
</tr>
<tr>
<td>Fire performance with +/- 3%</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>SP60 FireStop Slab</td>
<td>EI60</td>
<td>EI60</td>
<td>EI60</td>
<td>EI60</td>
</tr>
<tr>
<td>SP120 FireStop Slab</td>
<td>EI120</td>
<td>EI120</td>
<td>EI120</td>
<td>EI120</td>
</tr>
<tr>
<td>SP Plus (With XL Bracket)</td>
<td>EI120</td>
<td>EI120</td>
<td>EI120</td>
<td>EI120</td>
</tr>
<tr>
<td>SP Plus (With XL Bracket)</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

*Performance requires min 100mm thick stone mineral wool insulation within the cavity.
Movement testing

SP FireStop Slab has been tested with movement applied in accordance with the provisions set out in Annex B of BS EN 1366-4: 2006. SP60 and SP120 can accommodate +/- 3% movement in horizontal cavities up to 300mm.

Masonry support bracket penetration

The SP FireStop System has been tested in conjunction with the AnconOptima Masonry Support System where the Masonry Support System penetrated the SP 60 FireStop Slab.

For further information on the use of masonry support brackets with the SP FireStop System please contact ROCKWOOL Technical Solutions.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>SP60 & SP120 FireStop Slab</th>
<th>SP FireStop Plus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1000mm</td>
<td>1200mm</td>
</tr>
<tr>
<td>Width</td>
<td>650mm</td>
<td>1000mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>75 & 90mm</td>
<td>75mm</td>
</tr>
<tr>
<td>Fire Resistance</td>
<td>Up to 2 hours*</td>
<td>Up to 2 hours*</td>
</tr>
</tbody>
</table>

*Subject to the application

Acoustic performance

ROCKWOOL products have acoustic properties and can reduce the levels of airborne sound transmission through wall and floor cavities. For further information please contact ROCKWOOL Technical Support.

Installation

ROCKWOOL SP FireStop Slabs are designed for cutting on site with a sharp knife or saw and a straight edge. The cavity to be fire stopped should be measured and the ROCKWOOL SP FireStop Slab cut to suit this dimension, using one piece only per gap width - see Figures 4 and 5.

For easy compression fitting and to accommodate the fixing pattern, cutting should be along the 1000mm length as indicated in figure 1.

The SP Fixing Brackets are then re-profiled by hand and cut as necessary to allow at least 75% penetration of the fire stop material – see figures 2 and 3.

They should be placed as shown in the diagrams, or fixed by other suitable mechanical means.
Fire stopping: Section 2 - Cavity barriers & cavity firestops

Fixing within cladding

1. Cut the ROCKWOOL SP FireStop Slab to suit the cavity size*, allowing for additional compression of up to 10mm.
2. The ROCKWOOL SP60 or SP120 FireStop Slab is impaled onto the SP Fixing Brackets at the rate of 2 per 1000mm length, fixed at 500mm ±10mm centres as shown in Figure 4. The SP Fixing Brackets should be placed 250mm ±10mm in from each end of the ROCKWOOL SP FireStop Slab.
3. Once the ROCKWOOL SP FireStop Slab has been accurately fitted, the SP Fixing Brackets must then be fitted to the edge of the concrete floor slab with metal fixings suitable for masonry.

Fixing into masonry wall cavities

1. Cut the ROCKWOOL SP FireStop Slab to suit the cavity size* ensuring a tight fit.
2. After suitably re-profiling the SP Fixing Brackets they can be built into the bed joints of the internal leaf at 500mm ±10mm centres. Alternatively the SP Fixing Brackets may be re-profiled by hand into an ‘L’ shape and mechanically fixed to the face of the inner leaf.
3. The ROCKWOOL SP FireStop Slab is then impaled onto the SP Fixing Bracket after the next lift of inner leaf masonry.
4. Work on both leaves can then be continued and must include either a vertical damp proof course (vertical installation) or a cavity tray (horizontal installation) installed over the SP FireStop Slab as shown in Figure 5.

*For cavity widths of 250mm or more, when used horizontally joints between adjacent lengths of SP FireStop Slab should be sealed on the top surface with aluminium foil tape, when used vertically joints between lengths should be sealed on both sides with aluminium foil tape.

Ancillaries

SP FireStop Fixing Brackets

<table>
<thead>
<tr>
<th>Bracket type</th>
<th>Cavity size (up to mm)</th>
<th>Pieces / pack</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP/S</td>
<td>100</td>
<td>50</td>
</tr>
<tr>
<td>SP/L</td>
<td>400</td>
<td>50</td>
</tr>
<tr>
<td>SP/XL</td>
<td>600</td>
<td>50</td>
</tr>
</tbody>
</table>

ROCKWOOL SP Fixing Brackets are supplied in three standard sizes; SP/S (small), SP/L (large) and *SP/XL for cavity widths up to 600mm. The brackets are supplied in cardboard boxes of 50 pieces, flat packed and designed to be easily re-profiled by hand on site.

*SP/XL brackets are designed for use with SP FireStop Plus Slab for 2 hours fire resistance in cavities up to 600mm.

Brackets are supplied in cardboard boxes, flat packed, and are designed to be easily re-profiled by hand on site. The SP Fixing Brackets should be cut on site as necessary to allow at least 75% penetration of the FireStop.

**In order to comply with the fire test certification, only ROCKWOOL SP Fixing Brackets must be used to install the product.

Specification clauses

The SP Firestop System is associated with the following NBS Clauses:

- F30 Accessories / sundry items for brick / block stone walling
 - 180 Cavity Closers
- F10 Sundry insulation / proofing work
 - 432 Cavity Barriers
- F12 Fire stopping systems
 - 360 Mineral Wool Rigid Batt
Sealing construction joints between fire resistance elements within a compartment is vital. Products and systems used in this application should achieve the same level of fire resistance as the compartment elements, whilst also maintaining integrity during the expansion and contraction (movement) of construction materials.

ROCKWOOL provide a range of tested products that are designed for sealing linear joints between different construction materials, that can also accommodate movement where required. Within our product range there are products suitable for:

- Fire stopping junctions between compartments walls and floors or roof decks
- Fire stopping expansion joints within the construction
- Sealing narrow joints between different substrates

Useful documents and standards

- ASFP Red Book: Fire stopping and penetration seals for the construction industry
- ASFP: Ensuring best practice for passive fire protection in buildings
- ASFP: On-site guide to installing fire stopping
- BS 476-20: Fire test on building materials and structures. Method for determination of the fire resistance of elements of construction
- BS EN 1366-4: Fire resistance test for service installations. Linear joint seals
- BS EN 1363-1: Fire resistance tests. General Requirements
- BS EN 13501-2: Fire classification of construction products and building elements. Classification using test data from resistance to fire tests, excluding ventilation services.
- BS EN 13501-2: Fire classification of construction products and building elements. Classification using test data from resistance to fire tests, excluding ventilation services.

ASFP (Association for Specialist Fire Protection) guidance documents can be sourced at www.asfp.org.uk
Fire stopping: Section 3 - Linear joint seals

FIREPRO® SoftSeal System

Advantages
- Suitable for penetration and linear joints
- Acoustically absorbent
- CE Marked
- Easy to handle and install
- Both vertical and horizontal joint applications
- Tested for durability to current EU guidelines
- Supplied pre-coated

Description
Part of the ROCKWOOL FIREPRO® range, FIREPRO® SoftSeal System incorporates a product specifically designed to accommodate movement within buildings in linear joint seals and penetration seals.

Applications
The FIREPRO® SoftSeal System has been specifically developed for two key applications areas:

Penetration seals
Description
As part of the comprehensive ROCKWOOL FIREPRO® range of fire protection products, FIREPRO® SoftSeal System incorporates a product specifically designed to apply to penetration seals within buildings, where the design needs to accommodate movement in the services.

The FIREPRO® SoftSeal System can be installed into apertures within masonry or drywall partitions as a standalone seal for openings up to 1000mm x 1000mm or as part of a larger ROCKWOOL Ablative Coated Batt seal (2 layers) to accommodate movement of services.

A FIREPRO® SoftSeal Coated Strip comprises a low-density stone wool SoftSeal Lamella Strip, pre-coated with SoftSeal Flexible Coating.

The FIREPRO® SoftSeal Coated Strip is supplied in strips 1200mm x 200mm x 100mm.

The FIREPRO® SoftSeal flexible Coating is also available in 5L, 10L and 20L tubs to enable site repairs to FIREPRO® SoftSeal Coated Strips and FIREPRO® SoftSeal Linear Joint Seals, that may have been damaged during installation.

To complement the FIREPRO® SoftSeal Coated Strip, ROCKWOOL also supplies FIREPRO® SoftSeal High Expansion Intumescent Sealant (310ml) and FIREPRO® SoftSeal Flexible Acoustic Intumescent Sealant (310ml).

FIREPRO® SoftSeal Coated Strip is intended to reinstate the fire resistance, acoustic and air seal performances of concrete floors, masonry walls and dry wall systems when voids have been created for the passage of services. This includes pipes made of steel, cast iron, copper, polypropylene (PP), high density polythene (HDPE), PVC and ABS along with all sheathed cables up to 80mm and supported cable bundles up to 100mm.

*Higher levels of service movement may be accommodated by installing the product under higher compression rates, please contact ROCKWOOL Technical Solutions for guidance.
Fire stopping: Section 3 - Linear joint seals

Performance

Fire performance

ROCKWOOL FIREPRO® SoftSeal Coated Strip has been tested to the dedicated fire resistance standard for penetration seals BS EN1366-3.

Table 1: Fire performance - Linear joint seals

<table>
<thead>
<tr>
<th>Max seal width (mm)</th>
<th>Min seal depth (mm)</th>
<th>Integrity (mins)</th>
<th>Insulation (mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>350</td>
<td>100</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>375</td>
<td>100</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>200</td>
<td>100</td>
<td>240</td>
<td>180</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
<td>240</td>
<td>180</td>
</tr>
</tbody>
</table>

Note: The fire performances quoted in table 1 are subject to varying application techniques and movement levels. For further information please contact ROCKWOOL Technical Support.

Standard details, showing the full scope of fire performance, are available from the ROCKWOOL Technical Solutions Team on 01656 862621.

FIREPRO® SoftSeal Coated Strip fire resistance tests were conducted using FIREPRO® SoftSeal Flexible Acoustic Intumescent Sealant and/or FIREPRO® SoftSeal High Expansion Intumescent Sealant.

For vertical applications the FIREPRO® SoftSeal Coated Strips are coated on both sides.

Movement

As part of the testing to BS EN 1366-4, FIREPRO® SoftSeal was assessed for its movement capabilities, prior to conducting the fire test. The product was tested to accommodate movement (expansion and contraction) of +/-15%.*

*See ROCKWOOL standard details for specific Ablative Coated Batt sizes.

Acoustic performance

Tested to EN 10140 with the following results:

• Rw 30 dB: When installed with 100mm thick SoftSeal Batt
• Dn,e,w 40 dB: When installed with 100mm thick SoftSeal Batt

Water permeability

• Tested to EN 1027 - No leakage observed up to 300Pa.

Air permeability

• Tested to EN 1026 up to 600Pa.
• Leakage at 50Pa - 0.1/1.4 m³/m²/h.

Technical information

Standards and approvals

FIREPRO® SoftSeal has been tested and assessed to BS EN1366-3 2009 and classified to EN 13501-2.

FIREPRO® SoftSeal Coated Strip System has been CE marked against ETAG026-2.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1200mm</td>
</tr>
<tr>
<td>Width</td>
<td>200mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>100mm</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 2 hours</td>
</tr>
<tr>
<td>Coating</td>
<td>2 sides</td>
</tr>
<tr>
<td>Density</td>
<td>80kg/m³</td>
</tr>
<tr>
<td>Movement</td>
<td>+/- 15%</td>
</tr>
</tbody>
</table>

Installation

1. Measure the height of the aperture to be sealed.
2. Cut the FIREPRO® SoftSeal Coated Strips 15% bigger than the height of the void to be filled, so when installed they are under compression.
3. Ensure substrate is clean and free of dust and debris.
4. Apply a bead of FIREPRO® SoftSeal Acoustic Intumescent Sealant around the internal edges of the aperture.
5. Install the FIREPRO® SoftSeal Coated Strips horizontally, so that the lamellas are running horizontally.
6. Apply a bead of FIREPRO® SoftSeal Acoustic Intumescent Sealant to butt joints between different sections of SoftSeal Coated Strip and around services.
7. FIREPRO® SoftSeal High Expansion Intumescent Sealant shall be used around plastic pipes in accordance with ROCKWOOL standard details.
8. Apply FIREPRO® SoftSeal Flexible Coating to the face of all joints between SoftSeal Coated Strip and substrate/ Ablative Coated Batt.

Note: Ensure adequate space above and below services to accommodate the FIREPRO® SoftSeal product, for the movement levels required.
Linear joint seals

Description
As part of the comprehensive FIREPRO® range of fire protection products, ROCKWOOL FIREPRO® SoftSeal System incorporates a product specifically designed to form a linear joint seal within buildings, where the design needs to accommodate movement in the joint.

It may be installed horizontally or vertically and is suitable for linear joint widths up to 300mm*. FIREPRO® SoftSeal Linear Joint Seal can also be used as a 'head-of-wall' barrier to extend the fire resistance and acoustic performances of masonry walls that finish at suspended ceiling height, up to the concrete soffit above. FIREPRO® SoftSeal Linear Joint Seal can be used in conjunction with ROCKWOOL Ablative Coated Batt for head-of-wall applications.

A FIREPRO® SoftSeal Linear Joint seal comprises a low-density stone wool FIREPRO® SoftSeal batt, pre-coated with FIREPRO® SoftSeal Flexible Coating. Depending on the application, FIREPRO® SoftSeal Linear Joint Seal can be supplied on either one or both sides. (Single Sided for Horizontal Applications. Double sided for Vertical Applications).

The FIREPRO® SoftSeal Flexible Coating is also available in 5L, 10L and 20L tubs to enable site repairs to FIREPRO® SoftSeal Coated Strips and FIREPRO® SoftSeal Linear Joint Seals, that may have been damaged during installation.

The FIREPRO® SoftSeal Linear Joint Seal is supplied in strips 1200mm x 200mm x 100mm.

*Linear Joints over 300mm wide can be accommodated, with the addition of steel Z brackets.

For further information and advice on sizes or applications, please contact Rockwool Technical Solutions Team on 01656 862621.

Performance

Fire performance
ROCKWOOL FIREPRO® SoftSeal Linear Joint Seal has been tested to the dedicated fire resistance standard for linear joint seals BS EN1366-4 and shown to provide up to 4 hours fire performance (EI40 & EI80).

Movement
As part of the testing to BS EN 1366-4, FIREPRO® SoftSeal was assessed for its movement capabilities, prior to conducting the fire test. The product was tested to accommodate movement (expansion and contraction) of +/- 25%.

Acoustics
Tested to EN 10140 based on two thicknesses with the following results:
- Rw 30 dB: When installed with 100mm thick SoftSeal Batt
- Rw 39 dB: When installed with 200mm thick SoftSeal Batt
- Dn,e,w 40 dB: When installed with 100mm thick SoftSeal Batt
- Dn,e,w 49 dB: When installed with 200mm thick SoftSeal Batt

Water permeability
Tested to EN 1027 - No leakage observed up to 300Pa.

Air permeability
- Tested to EN 1026 up to 600Pa.
- Leakage at 50Pa - 0.1/1.4 m³/m²/h.

Technical information

Standards and approvals
FIREPRO® SoftSeal has been tested and assessed to BS EN1366-4: 2006 + A1: 2010 and classified to EN 13501-2. FIREPRO® SoftSeal Linear Joint Seal system has been CE marked against ETAG026-3.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1200mm</td>
</tr>
<tr>
<td>Width</td>
<td>200mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>100mm</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 4 hours</td>
</tr>
<tr>
<td>Coating</td>
<td>1 side</td>
</tr>
<tr>
<td>Density</td>
<td>80kg/m³</td>
</tr>
<tr>
<td>Movement</td>
<td>+/- 25%</td>
</tr>
</tbody>
</table>

Installation
1. Measure the width of the linear joint to be sealed.
2. Cut the FIREPRO® SoftSeal Coated Strips up to 25% bigger than the joint width (dependent on movement required), so when installed they are under compression.
3. Ensure substrate is clean and free of dust and debris.
4. Install the FIREPRO® SoftSeal Linear Joint Seal with the coating on the top surface.
5. Apply FIREPRO® SoftSeal Flexible Coating to the face of all joints between the seal and the substrate, overlapping by 20mm.
6. Apply FIREPRO® SoftSeal Flexible Coating to the faces of all butt joints between pieces of Soft Seal Linear Joint Seal.

Specification clauses
FIREPRO® SoftSeal System is associated with the following NBS clauses:

<table>
<thead>
<tr>
<th>P12 Fire stopping systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 – Linear gap sealing</td>
</tr>
</tbody>
</table>
Fire stopping: Section 3 - Linear joint seals

Linear & Trapezoidal Firestop System

Description

Linear and Trapezoidal Firestop products are made from dense, moisture resistant stone wool, allowing adequate compression yet retaining the necessary lateral stiffness for ease of installation.

The Linear and Trapezoidal Firestop System can be manufactured to suit a wide range of steel profile dimensions.

Advantages

- Up to 4 hours fire resistance
- Suitable for walls ranging from 400kg/m³
- Manufactured for a wide range of profiles
- Easy installation

All Firestop products are supplied in standard lengths of 1m.

Linear Firestop 2A
- Rectangular strips (installed under min. 5% compression)
- Thicknesses: 12.5, 20, 30, 40, 60, 70, 80, 90, 100mm
- Widths: 100, 150, 200, 300, 400mm
- Fire resistance: Up to 4 hours

Trapezoidal Firestop 2B
- Trapezoidal strips (tight fit required)
- Available for all profiled decks. Deck profile to be named at time of order, e.g. Ribdeck 60, Alphalok etc.

Dovetail Infill Firestop Strip
- Supplied as narrow rectangular strips for pinched installation into nominated dovetail shaped deck profiles; e.g. Holorib, Quickspan, Q51

Applications

Linear and Trapezoidal Firestop Systems have been developed to provide up to 4 hours firestopping at the junctions of compartment walls and floors.

Solutions illustrated are for masonry walls with a density of at least 400kg/m³ and include both fire integrity and insulation criteria for concrete decks, composite decks and simple profiled sheeting.

Figure 1
Linear Firestop 2A

Figure 2
Linear Firestop 2A and 2B

Figure 3
Linear Firestop 2A and Dovetail Infill Strip

Performance

Fire performance

All fire ratings apply to gaps over walls constructed of dense aggregate blocks, lightweight aggregate concrete, clay bricks or concrete blocks with a minimum density of 400kg/m³.

For further information on dry wall systems, please contact ROCKWOOL Technical Support.

Fire resistance includes integrity and insulation criteria to BS 476: Part 20: 1987.

<table>
<thead>
<tr>
<th>Min. wall thickness/ fire stop width</th>
<th>Fire resistance (integrity and insulation)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100mm</td>
<td>2 hours</td>
</tr>
<tr>
<td>150mm</td>
<td>3 hours</td>
</tr>
<tr>
<td>200mm</td>
<td>4 hours</td>
</tr>
</tbody>
</table>

Note: Stated performance assumes fire resistance of supporting wall is no less than fire stop.

Chemical

ROCKWOOL stone wool insulation has a basaltic composition in which the refractory oxide components have been enhanced for stability at high temperatures. Stone wool is chemically inert. An aqueous extract of the wool is neutral (pH7) or slightly alkaline.

Biological

Linear and Trapezoidal Firestop Systems are completely rot proof, do not offer sustenance to vermin and do not encourage the growth of fungi, moulds and bacteria.

Compatibility

ROCKWOOL products are compatible with all normal building and constructional materials with which they are likely to come into contact.

Durability

ROCKWOOL materials will perform effectively throughout the lifetime of the building with a minimum of maintenance (unless disturbed).
Technical information

Standards and approvals
Linear and Trapezoidal Firestops have been tested to BS 476: Part 20: 1987 and can provide up to 4 hours fire protection.

Achieves Euroclass A1 in accordance with BS EN 13501-1.

Linear and Trapezoidal Firestops are third party approved with LPCB – certificate no. 022b.

This product has been authorised for use in LUL surface and sub-surface premises when installed in accordance with this datasheet. Please refer to the LUL Approved Product Register at www.LU-apr.co.uk for specific details.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1000mm</td>
</tr>
<tr>
<td>Width</td>
<td>Up to 400mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>12.5 – 100mm</td>
</tr>
<tr>
<td>Deck profiles</td>
<td>Various</td>
</tr>
<tr>
<td>Density</td>
<td>110kg/m³</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 4 hours</td>
</tr>
</tbody>
</table>

Handling / storage

Linear and Trapezoidal Firestop materials are light and easy to handle and should be cut using a sharp bladed knife. Store in dry conditions.

Maintenance

Once installed, Linear and Trapezoidal Firestop materials will need no maintenance unless disturbed.

Other information

For areas such as clean rooms, Firestop systems are available totally enclosed in shrink wrap.

Installation

The following installation requirements must be met in order to reliably achieve the stated fire resistances.

- Linear Firestop 2A must be fitted as rectangular pieces, tightly butt jointed and compressed by at least 5% in thickness.
- Up to 3 layers may be used. Single layer firestopping will always be preferred, with multi-layer methods limited to those occasions where building tolerances demand practicality. All layers should be installed simultaneously. The height of void should not exceed the width of the Firestop.
- Gaps associated with perimeter floor slab/wall fire stopping should be achieved using ROCKWOOL SP Firestop Systems.
Fig 7a: The ‘overhang’ of the Linear Firestop 2A should be supported with steel self-tapping screws or ‘hammer fix’ anchors into deck / concrete soffit at 350mm maximum centres (minimum of 3 fixings per 1m length of fire stop).

Fig 7b: Where the Linear Firestop 2A is required to be fixed to the deck at distances in excess of 400mm, turn the 1m length of fire stop 90° and cut to required size to suit profile spacing. In such cases, secure each length of fire stop to the soffit using at least 2 fixings at both ends.

When fire stopping between the head of a fire resistant wall and the underside of a perforated roof deck insulated with ROCKWOOL HARDROCK® Multi-Fix (DD) flat roof insulation, it should be considered best practice to fill both the upper and lower deck profiles with Trapezoidal Firestop 2B products. In such cases, when placing an order it should be noted that the sizes of the two profiles may differ.

In cases where combustible thermal insulation passes over the head of a fire resisting wall, guidance on maintaining fire compartmentation is provided in Approved Document B (Volume 2, Section B3) of The England and Wales Building Regulations 2000 (2006 edition). To reduce the risk of fire spreading to an adjacent compartment in such cases, it may be necessary to extend the wall through the roof line or introduce a ‘protected zone’ 1500mm either side of the fire resisting wall.

Specification clauses

Linear and Trapezoidal Firestops are associated with the following NBS clauses:

<table>
<thead>
<tr>
<th>Clause Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F30</td>
<td>Accessories/sundry items for brick/block/stone walling</td>
</tr>
<tr>
<td>670</td>
<td>Tops of non-loadbearing walls</td>
</tr>
<tr>
<td>G30</td>
<td>Metal profiled sheet decking</td>
</tr>
<tr>
<td>240</td>
<td>Fire resisting profile fillers</td>
</tr>
</tbody>
</table>

A wide range of linear and trapezoidal firestop sizes are available to suit most metal deck profiles. Please contact the ROCKWOOL Customer Support Centre for more information.
FIREPRO® Intumescent Expansion Joint Seal

Description
Intumescent Expansion Joint Seal is a compressible strip formed by shrink wrapping a graphite based intumescent polymer to both faces of a ROCKWOOL core.

Intumescent Expansion Joint Seal is supplied in one metre lengths to suit the joint to be filled. The width of the product is dependent on the fire rating required (see Table 1).

Advantages
- Up to 4 hours fire resistance
- Easy to install compression fit
- Dry fix solution
- Water resistant

Applications
FIREPRO® Intumescent Expansion Joint Seal is installed by simply compressing by hand and then pushing into the joint. Adjacent pieces of the product are tightly butted together. There is no need to use any adhesives or intumescent sealant in conjunction with the product.

In a fire, the graphite based intumescent material swells to form a hard char, which prevents the passage of fire and smoke through the joint.

Intumescent Expansion Joint is suitable for use in:
- Blockwork cavities
- Curtain wall/Concrete slab interfaces
- Expansion joints
- Structural joints

Performance
Fire performance
ROCKWOOL Intumescent Expansion Joints to provide up to 4 hours rating for linear joints in walls & floors.

Table 1: Fire resistance performance

<table>
<thead>
<tr>
<th>Seal depth ‘X’ (mm)</th>
<th>10-14</th>
<th>15-30</th>
<th>31-50</th>
<th>51-75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of seal in brackets</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25 [x16] single</td>
<td>120</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>50 [x16] single</td>
<td>240</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>25 [x32] double</td>
<td>NA</td>
<td>120</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>50 [x32] double</td>
<td>NA</td>
<td>240</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>50 [x52] double</td>
<td>NA</td>
<td>NA</td>
<td>240</td>
<td>NA</td>
</tr>
<tr>
<td>50 [x78] double</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>240</td>
</tr>
</tbody>
</table>

Note: The thickness of the seal (in brackets) is designed to ensure compression when installing the seal into the gap.
Technical information

Standards and approvals

FIREPRO® Intumescent Expansion Joint Seal has been tested to BS 476: Part 20: 1987 and can provide up to 4 hours fire protection in joints.

FIREPRO® Intumescent Expansion Joint Seal is third party accredited through IFC and Certifire.

Product Information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1000mm</td>
</tr>
<tr>
<td>Width</td>
<td>15-78mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>25mm, 50mm</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 4 hours</td>
</tr>
</tbody>
</table>

Installation

Installation In floors

Intumescent Expansion Joint is used to prevent fire penetration through movement joints and gaps in walls and concrete floors (Figure 2) for a specified period up to 4 hours. They are manufactured oversize to fit under compression.

1. Remove all loose debris and loose debris from within the gap
2. Ensure correct width is installed to suit the required Fire Rating
3. Where the gap varies in the length to be sealed, ensure that the correct thickness is installed under compression
4. Do NOT remove sleeving
5. Keep material dry and protect from impact damage
6. Compress and insert the strip into the gap ensuring tight butt joints

Specification clauses

FIREPRO® Intumescent Expansion Joint Seal is associated with the following NBS clauses:

- E40 Designed joints in in-situ concrete
 - 545 Compressible sealing strip system
- F30 Accessories / sundry items for brick / block stone walling
 - 616 Fire resistant movement joints without sealant
 - 670 Tops of non-loadbearing walls
Fire stopping: Section 3 - Linear joint seals

FIREPRO®
Acoustic Intumescent Sealant

Advantages
- Up to 4 hours fire protection
- Acoustically tested
- Air leakage tested
- Suitable for linear joints up to 50mm wide
- Suitable with multiple substrates and services
- Increased movement capability
- Available as a trowel grade option

Description
Acoustic Intumescent Sealant is a high specification, one part water based acrylic sealant. Acoustic Intumescent Sealant is designed for use in the installation of ROCKWOOL Ablative Coated Batt, sealing linear joints and some individual service penetrations passing through various substrates.

Applications
Acoustic Intumescent Sealant is comprehensively tested for a wide range of applications which include:
- Sealing service penetrations
- Linear joint seals
- Installation of Ablative Coated Batt

This product should NOT be allowed to come into direct contact with cPVC type piping.

Performance

Standards and approvals
Acoustic Intumescent Sealant has been tested to BS EN 1366-3: 2009 and BS EN 1366-4: 2006 +A1:2010 and classified to EN 13501-2, providing up to 4 hours fire protection in joints up to 30mm.

Acoustic Intumescent Sealant has been CE marked against ETAG026-2.

Acoustic Intumescent Sealant is third party accredited through IFC and Certifire.

Acoustic Intumescent Sealant is third party approved with LPCB – certificate no. 022b(4)

Fire performance

AIS Tables – Fire protection

<table>
<thead>
<tr>
<th>Approval</th>
<th>Application</th>
<th>Gap width</th>
<th>Substrate combination</th>
<th>Integrity</th>
<th>Installation</th>
<th>Certifier document place</th>
</tr>
</thead>
<tbody>
<tr>
<td>BS 476-20 Floor</td>
<td>up to 50mm</td>
<td>Variable</td>
<td>up to 120 mins</td>
<td>Single sided</td>
<td>CF5577 - PG 4</td>
<td></td>
</tr>
<tr>
<td>EN 1366-3 Floor</td>
<td>up to 50mm</td>
<td>Variable</td>
<td>up to 240 mins</td>
<td>Upper face</td>
<td>CF5577 - PG 7</td>
<td></td>
</tr>
<tr>
<td>EN 1366-4 Wall</td>
<td>up to 50mm</td>
<td>Variable</td>
<td>up to 120 mins</td>
<td>single sided</td>
<td>CF5577 - PG 5 & 6</td>
<td></td>
</tr>
</tbody>
</table>

Substrates include AAC, Softwood and Steel – please refer to CF5577 for combinations and individual ratings

CERTIFICATE No CF 5577 - EN1366-4 +A1 Approval Matrix

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Max. joint width (mm)</th>
<th>Min. seal depth (mm)</th>
<th>Backing material</th>
<th>Integrity (mins)</th>
<th>Insulation (mins)</th>
<th>Movement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall constructions (min 150mm thick)</td>
<td>60*</td>
<td>20 (both faces)</td>
<td>Polyethylene 20mm & 50mm diameter</td>
<td>240</td>
<td>120</td>
<td>24 Shear 8.3 Lateral</td>
</tr>
<tr>
<td>60*</td>
<td>5 (either face)</td>
<td>75mm deep, compressed 15% stonewool 60kg/m³</td>
<td>240</td>
<td>60</td>
<td>25 Shear 12.5 Lateral</td>
<td></td>
</tr>
</tbody>
</table>

* Pre movement

Application technique: For good adhesion the surfaces of the building element shall be free of any dust or grease and may need to be primed. On good clean, virgin concrete & masonry, no priming required.
Fire stopping: Section 3 - Linear joint seals

CERTIFICATE No CF 5577 - EN1366-4+A1 Approval Matrix

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Max joint width (mm)</th>
<th>Min seal depth (mm)</th>
<th>Backing material</th>
<th>Integrity (mins)</th>
<th>Insulation (mins)</th>
<th>Movement %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autoclaved aerated concrete</td>
<td>60*</td>
<td>20 (both faces)</td>
<td>Polyethylene 20mm & 50mm diameter</td>
<td>180</td>
<td>60</td>
<td>16.6 Lateral</td>
</tr>
<tr>
<td>Autoclaved aerated concrete</td>
<td>60*</td>
<td>5 (either face)</td>
<td>100mm deep, compressed 15%, stonewool 60kg/m³</td>
<td>240</td>
<td>240</td>
<td>25 Lateral</td>
</tr>
</tbody>
</table>

* Pre movement

Application technique: For good adhesion the surfaces of the building element shall be free of any dust or grease and may need to be primed. On good clean, virgin concrete & masonry, no priming required.

Rigid walls:
The wall must have a minimum thickness of 150mm and comprise concrete, aerated concrete or masonry with a minimum density of 450kg/m³.

Flexible walls:
The walls must have a minimum thickness of 120mm and comprise timber or steel studs lined on both faces with a minimum of 2 layers of 12.5mm thick "Type F" Gypsum board according to EN 520. In timber stud walls no part of the penetration shall be closer than 100mm to a stud, the cavity must be closed between the penetration seal and the stud and a minimum of 100mm of insulation of Class A1 or A2 according to EN 13501-1 must be provided within the cavity between the penetration and the stud.

For further information, please refer to the ROCKWOOL standard details.

ROCKWOOL® FIREPRO® Acoustic Intumescent Sealant- Approval Matrix

<table>
<thead>
<tr>
<th>Service type</th>
<th>Pipe O/D</th>
<th>Pipe wall thickness</th>
<th>Annular gap</th>
<th>Depth of sealant</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper and steel pipes</td>
<td>15 mm ≥ 159 mm</td>
<td>0.8 mm ≥ 14.2 mm</td>
<td>10 mm</td>
<td>25mm (both faces)</td>
<td>E120*</td>
</tr>
</tbody>
</table>

* for insulation ratings please contact Rockwool Technical solutions

Application technique: For good adhesion the surfaces of the building element shall be free of any dust or grease and may need to be primed. On good clean, virgin concrete & masonry, no priming required.
Acoustic performance
Weighted Sound Reduction Index (Rw) of up to 57dB dependant on:
- Type of construction
- Type of seal backing
- Size of joint

For specific information on acoustic performance please contact ROCKWOOL Technical Solutions on 01656 868490 or technical.solutions@rockwool.co.uk.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application temperature</td>
<td>>5°C</td>
</tr>
<tr>
<td>Yield</td>
<td>up to 5.9m</td>
</tr>
<tr>
<td>Weighted sound reduction index</td>
<td>up to 57dB</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>up to 4 hours</td>
</tr>
<tr>
<td>Shelf life</td>
<td>18 months</td>
</tr>
</tbody>
</table>

Installation

All surfaces must be thoroughly clean and free of bond breaking contaminants prior to application of the sealant. No priming is required for most commercial substrates; however, it is recommended that before installation the sealant is applied to a small area of the substrate to assess adhesion.

The sealant should not be applied if the ambient temperature is below 5°C as adhesion may be impaired.

The sealant is fast curing, approximately 15-minute tack free time. When fully cured, the sealant can be overpainted.

Each cartridge/sausage is intended to provide the following application rates:

<table>
<thead>
<tr>
<th>Joint size (mm)</th>
<th>Depth of sealant (mm)</th>
<th>Yield per cartridge (m)</th>
<th>Yield per sausage (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>10</td>
<td>3.10</td>
<td>5.90</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>1.03</td>
<td>1.95</td>
</tr>
<tr>
<td>30</td>
<td>20</td>
<td>0.51</td>
<td>0.95</td>
</tr>
</tbody>
</table>

Specification clauses

FIREPRO® Acoustic Intumescent Sealant is associated with the following NBS clauses:

- E40 Designed joints in in-situ concrete
- F30 Accessories / sundry items for brick / block stone walling
- L10 Windows / rooflights / screens / louvres
- L20 Doors / shutters / hatches
- P12 Fire stopping systems

FIREPRO® Acoustic Intumescent Sealant has been CE marked against ETAG 026-02 and is fully certified with warringtonfire certifire (CF 5577).

FIREPRO® Acoustic Intumescent Sealant has also been successfully tested to achieve Indoor Air Comfort Gold®.
FIREPRO® Fire Resistant Silicone Sealant

Advantages
- Up to 4 hours fire resistance
- Easily applied cartridge application
- Sealing joints up to 40mm
- Suitable with multiple substrates
- Suitable in joints with high movement capability
- Durable – Up to 25 years service

Description
ROCKWOOL Fire Resistant Silicone Sealant is a one party alkoxy cure silicone supplied in 310ml cartridges. ROCKWOOL Fire Resistant Silicone Sealant offers excellent adhesion to a number of substrate types which include steel and masonry.

Applications
ROCKWOOL Fire Resistant Sealant is a high performance silicone which has been designed for use in joints with high movement capability or where joints are formed between multiple substrate types. ROCKWOOL Fire Resistant Silicone Sealant is suitable for joints up to 40mm and can provide up to 4 hours fire resistance.

Performance

Fire performance

<table>
<thead>
<tr>
<th>Joint size (mm)</th>
<th>Sealant depth (mm)</th>
<th>Backing material</th>
<th>Dimensions</th>
<th>Single or dual seal</th>
<th>Integrity (in mins)</th>
<th>Insulation (in mins)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>10</td>
<td>PE</td>
<td>25mm diameter</td>
<td>Single</td>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>Mineral wool (density 90kg/m²)</td>
<td>15mm thick x 10mm depth</td>
<td>Dual</td>
<td>240</td>
<td>240</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>PE</td>
<td>30mm diameter</td>
<td>Single</td>
<td>240</td>
<td>120</td>
</tr>
<tr>
<td>40</td>
<td>25</td>
<td>Mineral wool (density 90kg/m²)</td>
<td>40 x 25mm depth</td>
<td>Dual</td>
<td>240</td>
<td>240</td>
</tr>
</tbody>
</table>

Technical information

Standards and approvals
Fire Resistant Silicone Sealant is tested to BS 476: Part 20
Fire Resistant Silicone Sealant is third party accredited through IFC and Certifire.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pack size</td>
<td>310ml cartridge</td>
</tr>
<tr>
<td>Colour</td>
<td>White</td>
</tr>
<tr>
<td>Application temperature</td>
<td>≥ 5°C</td>
</tr>
<tr>
<td>Yield</td>
<td>27lm/L</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 4 hours</td>
</tr>
</tbody>
</table>
Installation

Application of ROCKWOOL Fire Resistant Silicone Sealant is a simple process as the product is extruded from a cartridge loaded into a standard sealant gun. The depth of the joint will depend on the gap to be filled and the fire rating required (see Table 1).

All surfaces must be thoroughly clean and free of bond breaking contaminants prior to application of the sealant. No priming is required for most construction substrates; however, we recommend that a small area be tested on substrates.

The sealant should not be applied if the ambient temperature is below 5° C as adhesion will be impaired.

Coverage

ROCKWOOL Fire Resistant Silicone Sealant is available in 310ml cartridges. One cartridge will provide the following coverage rates:

<table>
<thead>
<tr>
<th>Joint size (mm)</th>
<th>Metres per litre</th>
</tr>
</thead>
<tbody>
<tr>
<td>6x6</td>
<td>27.75</td>
</tr>
<tr>
<td>9x6</td>
<td>18.50</td>
</tr>
<tr>
<td>12x9</td>
<td>9.25</td>
</tr>
<tr>
<td>18x12</td>
<td>4.75</td>
</tr>
<tr>
<td>25x10</td>
<td>4.00</td>
</tr>
</tbody>
</table>

Specification clauses

ROCKWOOL Fire Resistant Silicone Sealant is associated with the following NBS clauses:

- E40 Designed joints in in-situ concrete
 - 530 Sealant
- F30 Accessories / sundry items for brick / block stone walling
 - 610 Movement joints with sealant
- L10 Windows / rooflights / screens / louvres
 - 790 Fire resisting frames
- L20 Doors / shutters / hatches
 - 820 Sealant joints
- P12 Fire stopping systems
 - 395 Sealant: One part fire resisting acrylic
Fire stopping: Section 3 - Linear joint seals

SP Firestop OSCB

Advantages

- Fully tested to “ASFP Technical Guidance Document 19: Fire resistance Test for ‘open-state’ cavity barriers used in the external envelope or fabric of buildings”
- Up to 120 minutes fire integrity and insulation
- Provides 25mm or 44mm airspace
- Satisfies NHBC and CWCT guidance for ventilation gaps at cavity barrier locations
- Weather resistant
- Easy site storage and handling
- Combined with ROCKWOOL RAINSCREEN DUO SLAB it simplifies the design of high-rise buildings above 18m

Description

Exclusively designed and tested for use only in conjunction with ROCKWOOL RAINSCREEN DUO SLAB, SP Firestop OSCB forms an open-state cavity barrier within the building facade, which allows for ventilation and drainage of the cavity under service conditions.

The product comprises of a continuous intumescent strip fixed to the leading edge of a foil faced stone wool barrier, encapsulated by a weather-resistant polythene sleeve.

Fully tested to ASFP TGD 19, the combination of non-combustible insulation with effective intumescent, supports the construction of safe façade systems and aids the design of high-rise buildings over 18m in height.

Installed horizontally and designed to ensure an appropriate open air space is maintained, the SP Firestop OSCB is suitable for cavity widths up to 600mm (see under ‘Performance’ for full details).

Applications

SP Firestop OSCB is suitable for use within ventilated façade systems.

Performance

<table>
<thead>
<tr>
<th>SP Firestop OSCB</th>
<th>Polythene wrap</th>
<th>Overall void (mm)</th>
<th>Open cavity (mm)</th>
<th>Integrity (minutes)</th>
<th>Insulation (minutes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>White; red text</td>
<td>600</td>
<td>25</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>120 Lite</td>
<td>Red, black text</td>
<td>600</td>
<td>25</td>
<td>120</td>
<td>120</td>
</tr>
<tr>
<td>120</td>
<td>Red; white text</td>
<td>425</td>
<td>44</td>
<td>120</td>
<td>120</td>
</tr>
</tbody>
</table>

Note: SP Firestop OSCB must be specified at least 6mm thicker than the total thickness of RAINSCREEN DUO SLAB within in the cavity.

- SP Firestop OSCB 60 achieves up to 60 minutes, with a maximum open cavity of 25mm and maximum overall void of 600mm.
- SP Firestop OSCB 120 Lite achieves up to 120 minutes, with a maximum open cavity of 25mm and maximum overall void of 600mm.
- SP Firestop OSCB 120 achieves up to 120 minutes, with a maximum open cavity of 44mm and maximum overall void of 425mm.

Technical information

Standards & approvals

Fully tested to ASFP TGD 19, SP Firestop OSCB can comply with the following building regulations:

- England and Wales — Approved Document B
- Scotland—Technical Handbook Section 2
- Northern Ireland—Technical Booklet E
- Republic of Ireland—Technical Guidance Document B

Dimensions

Length: 1000mm
Thickness: 90mm
Fire stopping: Section 3 - Linear joint seals

Thicknesses of RAINSCREEN DUO SLAB over 230mm comprise two layers. Larger sizes available as per the table under ‘Performance’. Please contact Customer Service to order.

<table>
<thead>
<tr>
<th>Total cavity size (mm)</th>
<th>Rainscreen Duo Slab (mm)</th>
<th>SP Firestop OSCB 60 Width (mm)</th>
<th>Open cavity (mm)</th>
<th>SP Firestop OSCB 120 Lite Width (mm)</th>
<th>Open cavity (mm)</th>
<th>SP Firestop OSCB 120 Width (mm)</th>
<th>Open cavity (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>50</td>
<td>75</td>
<td>25</td>
<td>75</td>
<td>25</td>
<td>56</td>
<td>44</td>
</tr>
<tr>
<td>110</td>
<td>60</td>
<td>85</td>
<td>25</td>
<td>85</td>
<td>25</td>
<td>66</td>
<td>44</td>
</tr>
<tr>
<td>120</td>
<td>70</td>
<td>95</td>
<td>25</td>
<td>95</td>
<td>25</td>
<td>76</td>
<td>44</td>
</tr>
<tr>
<td>125</td>
<td>75</td>
<td>100</td>
<td>25</td>
<td>100</td>
<td>25</td>
<td>81</td>
<td>44</td>
</tr>
<tr>
<td>130</td>
<td>80</td>
<td>105</td>
<td>25</td>
<td>105</td>
<td>25</td>
<td>86</td>
<td>44</td>
</tr>
<tr>
<td>140</td>
<td>90</td>
<td>115</td>
<td>25</td>
<td>115</td>
<td>25</td>
<td>96</td>
<td>44</td>
</tr>
<tr>
<td>150</td>
<td>100</td>
<td>125</td>
<td>25</td>
<td>125</td>
<td>25</td>
<td>106</td>
<td>44</td>
</tr>
<tr>
<td>160</td>
<td>110</td>
<td>135</td>
<td>25</td>
<td>135</td>
<td>25</td>
<td>116</td>
<td>44</td>
</tr>
<tr>
<td>170</td>
<td>120</td>
<td>145</td>
<td>25</td>
<td>145</td>
<td>25</td>
<td>126</td>
<td>44</td>
</tr>
<tr>
<td>175</td>
<td>125</td>
<td>150</td>
<td>25</td>
<td>150</td>
<td>25</td>
<td>131</td>
<td>44</td>
</tr>
<tr>
<td>180</td>
<td>130</td>
<td>155</td>
<td>25</td>
<td>155</td>
<td>25</td>
<td>136</td>
<td>44</td>
</tr>
<tr>
<td>190</td>
<td>140</td>
<td>165</td>
<td>25</td>
<td>165</td>
<td>25</td>
<td>146</td>
<td>44</td>
</tr>
<tr>
<td>200</td>
<td>150</td>
<td>175</td>
<td>25</td>
<td>175</td>
<td>25</td>
<td>156</td>
<td>44</td>
</tr>
<tr>
<td>210</td>
<td>160</td>
<td>185</td>
<td>25</td>
<td>185</td>
<td>25</td>
<td>166</td>
<td>44</td>
</tr>
<tr>
<td>220</td>
<td>170</td>
<td>195</td>
<td>25</td>
<td>195</td>
<td>25</td>
<td>176</td>
<td>44</td>
</tr>
<tr>
<td>230</td>
<td>180</td>
<td>205</td>
<td>25</td>
<td>205</td>
<td>25</td>
<td>186</td>
<td>44</td>
</tr>
<tr>
<td>240</td>
<td>190</td>
<td>215</td>
<td>25</td>
<td>215</td>
<td>25</td>
<td>196</td>
<td>44</td>
</tr>
<tr>
<td>250</td>
<td>200</td>
<td>225</td>
<td>25</td>
<td>225</td>
<td>25</td>
<td>206</td>
<td>44</td>
</tr>
<tr>
<td>260</td>
<td>210</td>
<td>235</td>
<td>25</td>
<td>235</td>
<td>25</td>
<td>216</td>
<td>44</td>
</tr>
<tr>
<td>270</td>
<td>220</td>
<td>245</td>
<td>25</td>
<td>245</td>
<td>25</td>
<td>226</td>
<td>44</td>
</tr>
<tr>
<td>280</td>
<td>230</td>
<td>255</td>
<td>25</td>
<td>255</td>
<td>25</td>
<td>236</td>
<td>44</td>
</tr>
<tr>
<td>290</td>
<td>240*</td>
<td>265</td>
<td>25</td>
<td>265</td>
<td>25</td>
<td>246</td>
<td>44</td>
</tr>
<tr>
<td>300</td>
<td>250*</td>
<td>275</td>
<td>25</td>
<td>275</td>
<td>25</td>
<td>256</td>
<td>44</td>
</tr>
<tr>
<td>310</td>
<td>260*</td>
<td>285</td>
<td>25</td>
<td>285</td>
<td>25</td>
<td>266</td>
<td>44</td>
</tr>
<tr>
<td>320</td>
<td>270*</td>
<td>295</td>
<td>25</td>
<td>295</td>
<td>25</td>
<td>276</td>
<td>44</td>
</tr>
<tr>
<td>330</td>
<td>280*</td>
<td>305</td>
<td>25</td>
<td>305</td>
<td>25</td>
<td>286</td>
<td>44</td>
</tr>
<tr>
<td>340</td>
<td>290*</td>
<td>315</td>
<td>25</td>
<td>315</td>
<td>25</td>
<td>296</td>
<td>44</td>
</tr>
<tr>
<td>350</td>
<td>300*</td>
<td>325</td>
<td>25</td>
<td>325</td>
<td>25</td>
<td>306</td>
<td>44</td>
</tr>
<tr>
<td>360</td>
<td>310*</td>
<td>335</td>
<td>25</td>
<td>335</td>
<td>25</td>
<td>316</td>
<td>44</td>
</tr>
<tr>
<td>370</td>
<td>320*</td>
<td>345</td>
<td>25</td>
<td>345</td>
<td>25</td>
<td>326</td>
<td>44</td>
</tr>
<tr>
<td>380</td>
<td>330*</td>
<td>355</td>
<td>25</td>
<td>355</td>
<td>25</td>
<td>336</td>
<td>44</td>
</tr>
<tr>
<td>390</td>
<td>340*</td>
<td>365</td>
<td>25</td>
<td>365</td>
<td>25</td>
<td>346</td>
<td>44</td>
</tr>
<tr>
<td>400</td>
<td>350*</td>
<td>375</td>
<td>25</td>
<td>375</td>
<td>25</td>
<td>356</td>
<td>44</td>
</tr>
<tr>
<td>410</td>
<td>360*</td>
<td>385</td>
<td>25</td>
<td>385</td>
<td>25</td>
<td>366</td>
<td>44</td>
</tr>
<tr>
<td>420</td>
<td>370*</td>
<td>395</td>
<td>25</td>
<td>395</td>
<td>25</td>
<td>376</td>
<td>44</td>
</tr>
<tr>
<td>425</td>
<td>375*</td>
<td>400</td>
<td>25</td>
<td>400</td>
<td>25</td>
<td>381</td>
<td>44</td>
</tr>
</tbody>
</table>

*Thicknesses of RAINSCREEN DUO SLAB over 230mm comprise two layers. Larger sizes available as per the table under ‘Performance’. Please contact Customer Service to order.

Ancillary products

SP Firestop OSCB Fixing Brackets

Required for installation, these galvanised steel brackets are supplied with SP Firestop OSCB at a rate of two per metre length. Brackets are packaged in a separate cardboard box located at the bottom of a pallet - the location will be marked with a label.

SP Fixing Brackets are designed to be easily re-profiled by hand on site, and should be cut as necessary to ensure they penetrate the barrier by approximately 75% of its width.

Stainless steel brackets are available as an option.

Pigtail Screws

These are required for SP Firestop OSCB 60 and 120 Lite, and are used to secure the front-facing intumescent strip. They are supplied at a rate of 3 per metre length and will be packaged with the SP Firestop fixing brackets.

Care should be taken to ensure that the pigtail screws protrude from the front face of the firestop by a maximum of 25mm.
Installation

SP Firestop OSCB is only tested and certified for horizontal applications in conjunction with RAINSCREEN DUO SLAB®.

SP Firestop OSCB is supplied ready to install with two galvanised steel fixing brackets and four pigtail screws per meter length.

The brackets should be mechanically and securely fixed to the wall at a maximum of 500mm centres using non-combustible fixings.

The product is impaled mid-barrier depth onto the fixing brackets, which should penetrate the barrier by approximately three-quarters of the product width. The barrier must be pushed back sufficiently to ensure full contact with the supporting wall.

For SP Firestop OSCB 60 and 120 Lite only, the front facing intumescent strip is secured to the barrier using the supplied pigtail screws, three per metre length at a maximum of 333mm centres. These screws should protrude from the front face of the barrier by a maximum of 25mm.

SP Firestop OSCB 120 should oversail the front face of the insulation, protruding into the cavity by at least 6mm.

Adjacent lengths of barrier should be tightly butt jointed together.

At a corner detail where two runs of OSCB meet (for clarity; referred to as A and B): A should be continued out past the corner to tightly butt against the outer cladding, and B should tightly butt against A.

Where OSCB meets a vertical firestop, OSCB should be stopped and tightly butted against it.

For cut lengths, a minimum of two fixing brackets should be used.

Imperfections of up to 10mm can be filled with ROCKWOOL Acoustic Intumescent Sealant.

Note: The polythene wrap covering each section of barrier is not to be removed, and if cut must be reinstated.
Fire protection: Section 1 - Structural steel/concrete

Section 1: Structural steel/concrete

Many building materials can lose significant strength when exposed to high temperatures. Providing fire resistance to the load bearing structure of a building ensures that the building remains structurally stable in the event of a fire. The ROCKWOOL® range of fire protection products can withstand temperatures in excess of 1000°C providing protection to steel and concrete structures for periods of up to 4 hours. This vital protection ensures occupants can escape and firefighters can operate without the risk of collapse.

Useful documents and standards

- ASFP Technical Guidance Document – TGD 14: Code of practice for the installation and inspection of board systems for the fire protection of structural steel
- ASFP Yellow Book: Fire protection for structural steel in buildings
- ASFP: Ensuring best practice for passive fire protection in buildings
- BS 476-21: Fire test on building materials and structures. Method for determination of the fire resistance of load bearing elements of construction
- BS EN 1365-2: Fire resistance test for load bearing elements. Floors & roofs
- BS EN 1365-3: Fire resistance test for load bearing elements. Beams
- BS EN 1365-4: Fire resistance test for load bearing elements. Columns
- BS EN 1363-1: Fire resistance tests. General Requirements
- BS EN 13501-2: Fire classification of construction products and building elements. Classification using test data from resistance to fire tests, excluding ventilation services.

ROCKWOOL® BEAMCLAD® Systems
ROCKWOOL® Soffit Slab

ASFP (Association for Specialist Fire Protection) guidance documents can be sourced at www.asfp.org.uk
Soffit Slab

Description
ROCKWOOL Soffit Slab is manufactured using high performing, non-combustible stone wool insulation. Available with a plain, foil or tissue facing which can provide up to 4 hours fire protection to the underside of concrete soffits.

Hi-impact Soffit Slab
With a 6mm rigid fiber cement board facing, this combination of two non-combustible products provides increased impact resistance and durability. Available in various thicknesses, the off-white facing can be easily decorated to match design and colour schemes.

Advantages
- Excellent thermal performance
- Effective acoustic insulation
- Non-combustible stone wool insulation and facing options
- Up to 4 hours fire resistance
- Water repellent
- Easily cut to accommodate services
- Simply butt together at joints
- Hi-impact option for durability

Applications
Suitable for use with concrete soffits where a thermal, fire or acoustic performance is required.

Performance

Fire performance
Soffit Slabs have been tested to BS EN 1363-1 to offer fire protection to reinforced concrete soffits. When applied to the soffit using the recommended fixings and pattern, 130 and 140mm thick products, with and without facings, provide 3 hours fire insulation and integrity to a minimum 90mm thick floor slab. 150 and 160mm thicknesses provide 4 hours to a minimum 150mm thick slab.

Thermal performance
ROCKWOOL® Soffit Slab has a thermal conductivity (k value) of 0.034 W/mK.
- Thermal resistance of un-faced Soffit Slab:
 - 130mm Soffit Slab: 3.82 m²K/W
 - 145mm Soffit Slab: 4.26 m²K/W
 - 160mm Soffit Slab: 4.70 m²K/W

A typical construction comprising of a 150mm concrete floor slab underlined with 130mm thick Soffit Slab would achieve a U-value of 0.25W/m²K. A U-value of 0.20W/m²K can be achieved using 160mm thick Soffit Slab.

Technical information

Standards and approvals
ROCKWOOL® Soffit Slab achieves a reaction to fire classification of A1 as defined in BS EN 13501-1.

Compatibility
ROCKWOOL® Soffit Slabs are chemically inert and compatible with most materials with which they are likely to come into contact in normal building applications.

Biological
ROCKWOOL® Soffit Slabs offer no sustenance to vermin and do not encourage the growth of fungi, moulds or bacteria.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1000mm (High Impact – 1200mm)</td>
</tr>
<tr>
<td>Width</td>
<td>600mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>130, 145, 160mm</td>
</tr>
<tr>
<td>Thermal conductivity</td>
<td>0.034 W/mK</td>
</tr>
<tr>
<td>Reaction to fire</td>
<td>Euroclass A1</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 4 hours</td>
</tr>
</tbody>
</table>
Installation

When fixing a tile or modular system, it is advisable to start with a focus reference slab in the centre of the soffit with subsequent slabs being fixed working towards each edge. The use of string lines or laser alignment equipment will assist in ensuring alignment and squareness of the installation.

Mechanical fixings

Soffit Slabs should be fixed direct to the concrete soffit using Ejot DDS fixings with the Ejot DDT70 washer or similar. Recommended number and pattern of fixings for each slab size are shown in figures 1 and 2 below. Care should be taken not to overtighten fixings to prevent damage to slab surface. For further information on fixing type and suitability, please refer to the fixing manufacturer.

Fixing size guide

<table>
<thead>
<tr>
<th>Thickness</th>
<th>High impact Soffit Slab</th>
<th>Plain, foil & tissue faced Soffit Slab</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>136mm</td>
<td>130mm</td>
</tr>
<tr>
<td></td>
<td>DDS 7.3 x 175mm</td>
<td>DDS 7.3 x 175mm</td>
</tr>
<tr>
<td>Ejot washer</td>
<td>DDT 70mm</td>
<td>DDT 70mm</td>
</tr>
<tr>
<td></td>
<td>166mm</td>
<td>145mm</td>
</tr>
<tr>
<td></td>
<td>DDS 7.3 x 200mm</td>
<td>DDS 7.3 x 200mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT 70mm</td>
</tr>
<tr>
<td></td>
<td>130mm</td>
<td>160mm</td>
</tr>
<tr>
<td></td>
<td>DDS 7.3 x 175mm</td>
<td>DDS 7.3 x 175mm</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DDT 70mm</td>
</tr>
</tbody>
</table>

Light fittings and services

Soffit insulation products should not be used for supporting light fittings or services. Such installations should be supported from the concrete soffit.

Specification clauses

The insulation/fire protection of the concrete soffit is to be ROCKWOOL® Soffit Slab alu-faced / High impact / white tissue / black tissue / un-faced ……………mm thick\(^1\), as manufactured by ROCKWOOL® Limited, Pencoed, Bridgend CF35 6NY and installed in accordance with the manufacturer’s recommendations.

\(^1\)Delete as necessary.

\(^2\)Insert required thickness.

NBS specification clauses

ROCKWOOL® Soffit Slab is associated with the following NBS Specification clauses:

- K11 Rigid sheet flooring / sheathing / decking / sarking / linings / casings
 - 885 Fire Protection Board
 - 890 Board
FIREPRO® Glue

Advantages
- LUL Approved
- Easy to apply
- Sets in as little as 4 hours
- Can be used from -10°C upward

Description
ROCKWOOL FIREPRO® Glue is a water based, fire resistant adhesive which is supplied in 17kg tubs and 300ml cartridges.

Applications
FIREPRO® Glue is suitable for use with FIREPRO® BEAMCLAD and ROCKWOOL Fire Duct Systems where glued joints or nogginis are required. FIREPRO® Glue can also be used in conjunction with other ROCKWOOL Stone Wool products where there is a requirement for a fire resistant adhesive.

- Frost exposure does not remove curing ability.
- The use of FIREPRO® glue is not limited to particular temperatures and has been tested when applied to surfaces with temperatures of -10°C and upwards, but the curing rate in-situ can be affected by:
 - Temperature (see Table 1)
 - Air humidity
 - Thickness of glue layer in a joint
 - Air access to glued joint (i.e. not sealed off)

Note: The temperature of FIREPRO® glue must be 5°C or more when applied to surfaces at lower temperatures.

Performance
FIREPRO® Glue has been widely used in fire tests conducted on ROCKWOOL FIREPRO® Fire Protection Systems where fire ratings of up to 4 hours have been achieved. For further information tested applications please contact ROCKWOOL.

Technical information

Standards and approvals
This product has been authorised for use in LUL surface and sub-surface premises when installed in accordance with this datasheet - please refer to the LUL Approved Product Register website www.LU-apr.co.uk for specific details.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description: Tub</th>
<th>Description: Cartridge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pack Size</td>
<td>17kg Tub</td>
<td>300ml Cartridge</td>
</tr>
<tr>
<td>Application</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature</td>
<td>Surface temperature of ≥ -10°C (Glue must be ≥ 5°C)</td>
<td>Surface temperature of ≥ -10°C (Glue must be ≥ 5°C)</td>
</tr>
<tr>
<td>Ph</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>Shelf Life</td>
<td>12 months</td>
<td>18 months</td>
</tr>
<tr>
<td>Fire Rating</td>
<td>Up to 4 hours (When tested with ROCKWOOL Fire Protection Systems)</td>
<td>Up to 4 hours (When tested with ROCKWOOL Fire Protection Systems)</td>
</tr>
</tbody>
</table>
Fire protection: Section 1 - Structural steel/concrete

Installation

Application of glue from tub is typically made by a pallet knife or trowel before pressing surfaces together. The product must always be stirred before use to ensure a uniform product consistency. Application of glue from cartridge is made using a sealant gun and spread evenly over the surface with a spatula or similarly flat bladed tool. Fixing boards together is supplemented by nails, pins or staples through noggin board joints and board joints.

Whilst steel surfaces may be acceptable when just moist to the touch, heavy water droplets, grease, scale oxide, dust etc should be removed prior to the application of FIREPRO® glue.

Testing has shown that even if glued joints are immediately subjected to heavy frost exposure, the final glued joint strength is not threatened, but curing is retarded.

Glue fixed noggins must be allowed to set fully before any attempt is made to fix cover boards. Table 1 suggests minimum times to allow such setting to occur between ROCKWOOL BEAMCLAD® noggins and steelwork.

FIREPRO® Glue may be used to attach cover boards onto cured noggins (and in glued board joints), provided that a 24 hour interval is acceptable before further trades work on such protected steelwork.

Noggins to steelwork

Exhaustive testing has been made under various application conditions. All noggins fitted into steelwork should be cut to provide an interference friction fit of approximately 0.5mm. Excessive oversizing causing the noggins to bend should be avoided (refer to Figures 1-3).

The noggins should be installed so as to be just proud of the flange tips. For web depths greater than 500mm ‘solid’ noggins or ‘T’ noggins ROCKWOOL BEAMCLAD® must be used. Again a nominal 0.5mm interference fit is recommended for all ambient conditions, but particularly for winter working. All noggin edges in contact with steelwork must be glued.

Ambient conditions & curing times

For all year round working, noggins should be cut to provide approximately 0.5mm interference fit into steelwork. Some friction in the fitting is required to satisfy all conditions and to provide a sensible limit to glue thickness.

In typical dry summer conditions of 20°C, curing of the basic glue will occur in approximately 4 hours before cover boards should be added onto the noggins.

The setting times of glue in moist air conditions is approximately 6-8 hours if the temperature is above freezing point, or in approximately 1 hour at 20°C.

Table 1: Setting times for different conditions

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Setting time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approx 20°C dry conditions</td>
<td>Approx 4 hours</td>
</tr>
<tr>
<td>Approx 3°C+ with moist air conditions</td>
<td>Greater than 24 hours expected</td>
</tr>
<tr>
<td>-10°C to 0°C</td>
<td>Adequate bond forms within 1 hour but full cure may be delayed over 24 hours when temperatures 0 - 6°C</td>
</tr>
</tbody>
</table>

Storage

Generally storage should be made in frost free conditions. Should frost exposure occur, the glue should be thawed out and thoroughly stirred.
Advantages

- Up to 4 hours fire resistance
- *Fire rated timber floor applications*
- Moisture repellent
- Quick and simple to apply
- No maintenance

Description

ROCKWOOL BEAMCLAD® is manufactured using high performing, non-combustible stone wool insulation. Available in a plain, foil or tissue faced finish, BEAMCLAD® can provide up to 4 hours fire protection to structural steel.

ROCKWOOL BEAMCLAD® boards are sized 2000 x 1200mm, in a range of thicknesses from 25mm up to 50mm (as standard).

Applications

FIREPRO® BEAMCLAD® Systems have been specially designed to provide fire protection to structural steel for periods of up to 4 hours. BEAMCLAD® Systems provide a flexible range of fixing solutions for all applications, these include:

- Complete glued system
- Welded pin/glued joint system
- Welded pin/dry joint system

FIREPRO® BEAMCLAD® can also be used to provide fire protection to timber floor systems for periods of up to 90mins* with a complete dry fixed system.

High air flow applications

Un-faced ROCKWOOL BEAMCLAD® Systems have been evaluated for use in return air plenums, by the Institute of Occupational Medicine to World Health Organisation test standards and for use in subways, for train speeds up to 150km per hour.

Performance

Fire performance

BEAMCLAD® Systems provide up to 4 hours fire resistance for structural steelwork, assessed at critical temperatures between 350°C and 800°C, including the default temperatures of 550°C (columns) and 620°C (beams). Un-faced, aluminium-foil and glass tissue faced product options comply with non-combustible definitions as referenced in UK Building Regulations.

Table 1: Fire performance of BEAMCLAD® Systems

<table>
<thead>
<tr>
<th>System</th>
<th>30</th>
<th>60</th>
<th>90</th>
<th>120</th>
<th>180</th>
<th>240</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glued noggins, glued application, glued board joints</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Welded pins, glued board joints</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Welded pin, dry board joints</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

*For further information on fire rated timber floor applications please contact ROCKWOOL Technical Support.

Technical information

Standards and approvals

ROCKWOOL BEAMCLAD® fire protection materials have been assessed to ENV 13381-4:2002 & EN 13881-4:2013 for the fire protection of loadbearing steelwork for up to 4 hours protection.

ROCKWOOL BEAMCLAD® achieves a reaction to fire classification of A1 as defined in BS EN 13501:1.

This product has been authorised for use in LUL surface and sub-surface premises when installed in accordance with this datasheet - please refer to the LUL Approved Product Register website www.LU-apr.co.uk for specific details.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>2000mm</td>
</tr>
<tr>
<td>Width</td>
<td>1200mm</td>
</tr>
<tr>
<td>Thickness</td>
<td>25 – 100mm²</td>
</tr>
<tr>
<td>Density</td>
<td>167 – 180kg/m³</td>
</tr>
<tr>
<td>Reaction to fire</td>
<td>Euroclass A1</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 4 hours</td>
</tr>
</tbody>
</table>

* Single board thickness
Installation

FIREPRO® BEAMCLAD® Systems provide a flexible range of fixing options to meet a variety of site requirements. BEAMCLAD® Systems can be broken down into two main types:

1) ROCKWOOL BEAMCLAD® dry joint systems
These use stud welded pins to secure the insulation to all structural steel sections. All board-to-board joints are straight butt joints, without the need for glue.

2) ROCKWOOL BEAMCLAD® glued joint systems
These use an inorganic and non-toxic glue to bind board-to-board joints and/or to the noggins. Galvanised nails of at least 2.5mm for nails shorter than 100mm and at least 4mm for 100mm nails or longer. Nails twice the thickness of insulation, are used to hold the joints together whilst the glue cures. Alternatively, pigtail screws can be used instead of galvanised nails. Pigtail screws should be minimum 2 x thickness of cover board -5mm.

Installation option 1: Dry board joint systems
Stud welded pin application
A dry joint system employing steel welded pins. The system is installed using 2.7mm diameter stud-welded pins.

The steelwork is cleaned in the area where the welded pin is to be positioned. The pin is then welded to the steel flange.

The ROCKWOOL BEAMCLAD® board is then impaled on to the stud welded pins and held in place with 28mm diameter spring steel non-return washers.

The stud welded pins are fixed at max. 320mm centres to top flange and to bottom flange.

Installation option 2: Glue joint systems
Glue-fixed noggins and board-to-board glued joints
ROCKWOOL BEAMCLAD® noggins (at 1000mm nominal centres) are glued between the steelwork flanges, and the ROCKWOOL BEAMCLAD® side boards are glued to the noggins, ensuring transverse board joints are coincident with the noggins. The ROCKWOOL BEAMCLAD® side boards are also glued at all vertical joints and horizontal board-to-board joints.

Round head nails (length ≥ 2 x thickness of board) are fixed through the side boards into the noggins (min 2) and soffit boards (at 400mm nominal centres) to consolidate the glued joints.

Stud welded pins and board-to-board glued joints
Pins are stud welded at max. 320mm centres to top flange and to bottom flange. All board-to-board joints are glued and nailed.

FIREPRO® Glue – Coverage rates for glued joint systems
FIREPRO® Glue is an inorganic, non-toxic product with a pH of 11. FIREPRO® Glue is supplied pre-mixed in 17kg tubs. A variety of joint types can be used (see previous page).

Coverage rate will depend on the linear length of the joints, width of joint (board thickness) and joint depth. Assuming total, effective usage of the glue on site, the following table provides an approximate weight (kg) of glue per linear metre of joint, based on a glue depth of 1mm.

<table>
<thead>
<tr>
<th>ROCKWOOL BEAMCLAD® thickness (mm)</th>
<th>Square butt joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.09</td>
</tr>
<tr>
<td>30</td>
<td>0.11</td>
</tr>
<tr>
<td>35</td>
<td>0.13</td>
</tr>
<tr>
<td>40</td>
<td>0.15</td>
</tr>
<tr>
<td>50</td>
<td>0.19</td>
</tr>
<tr>
<td>60</td>
<td>0.22</td>
</tr>
</tbody>
</table>

Note: Care should be taken when using FIREPRO® Glue with foil faced BEAMCLAD® as the alkalinity of the glue is very high and can react with the foil. Avoid any contact between the glue and the foil layer, if contact occurs remove the glue immediately with a damp cloth.

In practice, a degree of wastage would be expected and as such, it would be prudent to make an allowance for this when placing an order. As a very approximate guide, the coverage rate of a 17kg tub of FIREPRO® Glue would be 35m² of applied board.
Board jointing options

Butted corner joints:
Butted corner joints are made with square edge boards using either a dry joint, or FIREPRO® Glue and nails/pigtail screws at 400mm centres.

Axial joints:
All axial joints are made with square butt edges, without nails. Glue is only required for glued board systems. For Foil faced products, joints can be finished with Class ‘O’ foil tape.

Noggins:
ROCKWOOL BEAMCLAD® boards can be fixed to noggins, cut from ROCKWOOL BEAMCLAD® offcuts of at least the same thickness as the facia and soffit boards.

The edges of the noggins are glued where they contact the steelwork, then, once the glue has set firmly, the cover boards are fixed in position with FIREPRO® Glue and nails/pigtail screws.

Welded steel pins:
Boards are impaled onto stud welded pins and secured with non-return washers.

Cellular beams

Thickness calculation method
The method for determining the thickness of ROCKWOOL BEAMCLAD® required to protect a cellular or castellated beam shall be determined as the highest value derived from the following:

- The section factor of the I section above the opening
- The section factor of the I section below the opening
- Calculate the effective section factor using the following equation:
 \[\text{Section factor (m}^{-1}) = \frac{1400}{t} \text{, where } t \text{ = the thickness (mm) of the lower steel web} \]
- Confirm the limiting design temperature of the beam with the manufacturer. In the absence of such information, a conservative fail temperature of 450°C can be used.
- Using the calculated section factor and protection period required, determine the thickness of ROCKWOOL BEAMCLAD® for a solid beam from the appropriate fire protection table for the limiting design temperature (or 450°C) and the fixing system being considered.
- Multiply this thickness by 1.20 to obtain the ROCKWOOL BEAMCLAD® thickness for the cellular or castellated beam.

Installation options – cellular beams

Figure 6
Pigtail screws at 150 or 200mm nominal centres (see system options)

Screw length = minimum 2 x thickness of cover board - 5mm

FIREPRO® Glue

Figure 7
Beam with circular holes (boxed protection - glued and pinned joints)

Figure 8
Beam with square or rectangular holes (boxed protection - glued and pinned joints)

Figure 9
Beam with circular holes (boxed protection - dry joints)

Figure 10
Beam with square or rectangular holes (boxed protection - dry joints)

FIREPRO® BEAMCLAD® System Ancillaries

- Pigtail screws are available from ROCKWOOL stockists.
- Welded pins and sprung steel non-return washers are available from external suppliers.
- Fire Duct/Ductrock ductwork solutions are also available for steel duct protection.
- FIREPRO® Glue

Specification clauses

(To be read in conjunction with System Options on previous pages)

1. The structural steel is to be fire protected using ROCKWOOL BEAMCLAD®...s system, with a...facing, to provide...h fire resistance.
2. The main fixing system will be one of:
 - ROCKWOOL BEAMCLAD® noggin system and glued joints fixed at 1000mm centres.
 - ROCKWOOL BEAMCLAD® stud welded pin system fixed at max. 320mm centres to top flange, and to bottom flange.
3. Board-to-board joints can be dry fixed or glued and nailed/pigtail screwed in accordance with the data sheet.

NBS specification clauses

FIREPRO® BEAMCLAD® Systems are associated with the following NBS specification clauses:

K11 Rigid sheet flooring / sheathing / decking / sarking / linings / casings
- 885 Fire Protection Board
- 890 Board
ROCKWOOL BEAMCLAD® Systems Contractor Fixing Guide

ROCKWOOL BEAMCLAD® Systems provide a ‘tool-box’ of options and have been assessed based on fire test data carried out to ENV 13381-4:2002 and EN 13381-4:2013 and in accordance with ASFP Yellow Book, Fire Protection for Structural Steel in Buildings, 5th Edition.

They offer contractors simple and economical fire protection solutions to the very real diversity of modern steel constructions.

This section explains and illustrates the installation methods using the following fixing options:

- Stud welded pin dry joint board system
- Stud welded pin glued jointed board system
- Glue fix noggin, glued jointed board system
- Tested and approved for solid and cellular sections
Advantages

- Fast to install, dry fix stud welded pin system
- Only dry joint stud welded pin solution
- Stud pin fixing centres at max. 320mm for top flange and bottom flange
- Up to 3 hours fire protection

ROCKWOOL BEAMCLAD®

stud welded pin dry joint board system

A traditional stud welded pin solution with dry joints. This dry fix pin solution can be used for 2, 3 and 4-sided beam protection for a period of up to 3 hours.

Installation sequence

1. Clean the local area for pin welding and fix stud pin using arc or CD welds, ensuring a good contact has been achieved. Stud-welded pins are a minimum 2.7mm diameter. Test weld by bending pin.
2. Impale the ROCKWOOL BEAMCLAD® boards onto the stud welded pins using the deck soffit as a guide.
3. Push 28mm diameter sprung steel non-return washers onto the exposed pin until tight to the cover board face. Crop pins as necessary.
4. Tape joints using aluminium foil tape or scrim, if required.
5. In the case of beams, the pins are welded to the steel section along the flange tips and in two rows along the face of the bottom flange, nominally 50mm in from each edge.
6. Transverse joints in the boards fixed to the webs are offset with respect to those fixed to the flange by a minimum of 100mm.

Description

BEAMCLAD® boards are available with facings of glass tissue and reinforced aluminium foil as well as plain product. Size: 2000 x 1200mm. Standard thicknesses: 25, 30, 35, 40 and 50mm. Single board thicknesses up to 100mm are available.

Scope

Contractors are required to install materials as tested and detailed in this brochure. In situations not covered by this brochure, ROCKWOOL will either recommend a suitable detail or assist in obtaining an independent Design Appraisal.

Applications

This Fixing Guide provides details of all of the standard boxed applications. It covers fixing centres and details of available facings and joint details. Dry board joints for up to 3 hours and glued joints up to 4 hours protection.

Stud welded pin, dry joint board systems

Welded pin fixing solutions with dry joints are extremely quick to apply, reduce system installation costs and eliminate the need for glue.

Glued noggin fix and stud welded pin systems – glued joints

The glued joint ROCKWOOL BEAMCLAD® systems remain for the applications that require fire protection periods of up to 4 hours.

Figure 1

Stud welded pin, dry joint board system
The following key provides the required minimum thicknesses of ROCKWOOL BEAMCLAD® for the Section Factors given in the tables above.

<table>
<thead>
<tr>
<th>Section Factor</th>
<th>Thickness (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>25</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>35</td>
</tr>
<tr>
<td>D</td>
<td>40</td>
</tr>
<tr>
<td>E</td>
<td>45</td>
</tr>
<tr>
<td>F</td>
<td>50</td>
</tr>
<tr>
<td>G</td>
<td>55</td>
</tr>
</tbody>
</table>

Chart 1 - ROCKWOOL BEAMCLAD® stud welded pin dry joint system:
Critical steel temperature 620°C, 3 sided protection for beams

<table>
<thead>
<tr>
<th>Section Factor</th>
<th>Fire Resistance Period (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
</tr>
<tr>
<td>A</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
</tr>
<tr>
<td>C</td>
<td>29</td>
</tr>
<tr>
<td>D</td>
<td>29</td>
</tr>
<tr>
<td>E</td>
<td>29</td>
</tr>
<tr>
<td>F</td>
<td>29</td>
</tr>
<tr>
<td>G</td>
<td>29</td>
</tr>
</tbody>
</table>

Chart 2 - ROCKWOOL BEAMCLAD® stud welded pin dry joint system:
Critical steel temperature 550°C, 4 sided protection for beams and columns

<table>
<thead>
<tr>
<th>Section Factor</th>
<th>Fire Resistance Period (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
</tr>
<tr>
<td>A</td>
<td>30</td>
</tr>
<tr>
<td>A</td>
<td>30</td>
</tr>
<tr>
<td>B</td>
<td>29</td>
</tr>
<tr>
<td>C</td>
<td>29</td>
</tr>
<tr>
<td>D</td>
<td>29</td>
</tr>
<tr>
<td>E</td>
<td>29</td>
</tr>
<tr>
<td>F</td>
<td>29</td>
</tr>
<tr>
<td>G</td>
<td>29</td>
</tr>
</tbody>
</table>

Typical details

- **Figure 2**
 3-sided box

- **Figure 3**
 4-sided box
Fixing patterns

Figure 4
2-sided box with stud welded pins

Figure 5
2-sided box with stud welded pins

Dimensions
A = Stud welded pins at max. 320mm centres
B = Stud welded pins, nominally 50mm in from edge of board
C = Bottom flange stud welded pins at max. 320mm centres
D = Transverse joints in the side boards are offset with respect to those fixed to the flange by a minimum 100mm
E = ≤ 100mm Flange Width - 1 row of welded pins, ≥ 100mm Flange Width - 2 rows of pins required

Figure 6
2-sided box

Figure 7
2-sided box - W limit is 100mm. Where W >100mm a shelf angle or similar should be fixed to the wall

* For flange widths greater than 100mm, 2 rows of pins are required, each row approx. 50mm from flange tips.
ROCKWOOL BEAMCLAD®
glued joint systems

The following two systems are well established having been used for many years. The application of FIREPRO® Glue enhances the fire performance over the dry joint systems for 2, 3 and 4 hour periods. The glue joint systems are capable of providing up to 4 hours fire protection.

Fixing boards to noggins
Wherever three or four-sided protection is required, fixing to noggins is a practical option. No power supply is required.

Fixing boards with stud welded pins
Situations will always occur where noggins do not afford a practical choice, e.g. for two-sided box constructions or diverse perimeter bracketing.

Stud welded pins allow the installer a simple, tested alternative to noggins.

Installation sequence (noggin fix)
Fixing noggins
Cut 120mm wide noggins to suit web depth, using same thickness material as the cover protection. For web depths of 500mm and up to (C)600/(B)604mm use either solid noggins or ‘T’ shaped noggins. For stability purposes, it is recommended that the face of the ‘T’ noggin is made from the same thickness as the cover board but the thickness of the return into the web should be at least 50mm. These are then glued into position at 1000mm centres.

Fixing boards
Apply FIREPRO® Glue liberally to face of noggins. Quickly apply vertical boards and secure with nails/pigtail screws long enough to pierce full thickness of noggins before FIREPRO® glue forms a hardened surface.

Apply glue continuously and liberally to all board interfaces. Tightly butt to adjoining boards and nail/pigtail screw through edge joints with same length nails/pigtail screws as for noggins, at 400mm maximum centres.

* (C) denotes Column
 * (B) denotes Beam

Installation sequence (stud welded pin fix)
1. Fit stud welded pins (2.7mm diameter).
2. A selection of pins should be mechanically tested by bending from the vertical and returning it to the original position.
3. 28mm sprung steel non-return washers to secure boards.
4. Apply FIREPRO® Glue to all board-to-board joints.
5. Offer up flange boards and nail/pigtail screw through glued corner joints at 400mm maximum centres.
6. If using faced boards, apply foil or scrim tape over joints for uniformity of appearance.

For A/V charts, see Charts 1 and 2 (Stud Welded).
Fixing patterns

Figure 10
Fixing method using glued noggins, nails/pigtail screws and glued board-to-board joints

Dimensions

A = Noggins at max. 1000mm centres
B = Nails/pigtail screws at max. 150mm centres
C = Nails/pigtail screws at max. 400mm centres (max. 50mm from edge of board joint)

Figure 11 - Stud welded pin fixing arrangement
3-sided box with stud welded pins

Dimensions

A = Stud welded pins at 320mm centres
B = Stud welded pins at max. 50mm from edge of board
C = Nails at max. 400mm centres
D = Stud welded pins at 320mm centres

Figure 12
2-sided box

W ≤ 100
2 rows of pins nominally 50mm in from each edge at 320mm centres

W > 100
25 max
Board fixed by Firepro glue to shelf angle

For flange widths greater than 100mm, 2 rows of pins are required, each row approx. 50mm from flange tips.
The following key provides the required minimum thicknesses of ROCKWOOL BEAMCLAD® for the Section Factors given in the tables above.

- A = 25mm
- B = 30mm
- C = 35mm
- D = 40mm
- E = 50mm
- F = 60mm
- G = 70mm
- H = 80mm
- I = 90mm
- J = 100mm

Column applications

The fixing system for columns is the same as for beams except that only a single row of pins are required down then centre of the web where the web width is less than 120mm and the protection thickness is 30mm or greater.

Where stud weld pins are used, the boards across the web should be fixed to the noggins using nails/pigtail screws.

Board jointing options

- **Butted corner joints**
 - Butted corner joints are made with square edge boards using either a dry joint, or FIREPRO® Glue and nails/pigtail screws at 400mm centres.
 - Axial joints
 - All axial joints are made with square butt edges, without nails. Glue is only required for glued board systems. For foil faced products, joints can be finished with Class 'O' foil tape.

- **Noggins**
 - ROCKWOOL BEAMCLAD® boards can be fixed to noggins, cut from ROCKWOOL BEAMCLAD® offcuts of at least the same thickness as the facia and soffit boards.
 - The edges of the noggins are glued where they contact the steelwork. Once the noggins have set firmly, the cover boards are fixed in position with FIREPRO® Glue and nails/pigtail screws. The thickness of the noggin is to be the same as that of the cover board used.

- **Welded steel pins**
 - Boards are secured to 2.7mm diameter stud welded pins with 28mm diameter non-return washers.
 - Glue
 - FIREPRO® Glue is required between all board-to-board and board-to-noggin joints for glued systems.
 - Applying FIREPRO® Glue on the external face of joints is bad practice.
 - Whatever noggin system is employed, the glue between noggin and steel must be allowed to set hard before cover boards are applied to the noggins. This will normally take about 4 hours at 20°C ambient temperature.

- **FIREPRO® Glue** is supplied pre-mixed in 17kg tubs and 300ml cartridges.
 - Coverage rate will depend on the linear length of the joints, width of joint (board thickness) and joint depth. Assuming total, effective usage of the glue on site, the following table provides an approximate weight (kg) of glue per linear metre of joint, based on a glue depth of 1mm.

<table>
<thead>
<tr>
<th>ROCKWOOL BEAMCLAD® thickness (mm)</th>
<th>Square butt joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>0.09</td>
</tr>
<tr>
<td>30</td>
<td>0.11</td>
</tr>
<tr>
<td>35</td>
<td>0.13</td>
</tr>
<tr>
<td>40</td>
<td>0.15</td>
</tr>
<tr>
<td>50</td>
<td>0.19</td>
</tr>
<tr>
<td>60</td>
<td>0.22</td>
</tr>
</tbody>
</table>

In practice, a degree of wastage would be expected and as such, it would be prudent to make an allowance for this when placing an order. As a very approximate guide, the coverage rate of a 17kg tub of FIREPRO® Glue would be 35m² of applied board.
ROCKWOOL BEAMCLAD® systems are part of the ROCKWOOL FIREPRO® range of fire stopping and fire protection systems. The table opposite indicates the effect on A/V for three and four sided designs. Determine A/V factor from the table or by calculating for other exposure situations, ensuring the correct mass per metre is used.

Establish the period of fire protection required.

For A/V factors in excess of 300, contact ROCKWOOL for advice on both thicknesses and fixing methods preferred.

Bracing members: These do not generally require protection. If required as an essential element to the fire resistance, use A/V factor greater than 200 m⁻¹.

Where steel beams are fixed to composite steel and concrete decks, the profiled re-entrant void may not need additional protection if allowances for board thickness or steelwork section factor are made.

See the ASP Yellow Book A.3.5 for current independent guidance.

Profiled re-entrant voids above steel beams will need to be infilled:

- Where steel beams are positioned to form a continuation of a compartment wall
- Where non-composite beams support a trapezoidal steel deck

General notes for systems

Ensure steel is free from grease, dust or loose particles where noggins are to be glued or pins welded.

Dry off steelwork where large water droplets are present. Steel damp to the touch is acceptable.

Ensure that all noggins have the correct friction fit. Avoid excessive interference that may cause noggins to bend.

Fix additional noggins (if required) at beam ends, beam-to-beam joints and large penetrations. For stud welded pin systems it may be necessary to introduce soldier noggins into webs behind board to board joints to increase stability of the system on steelwork with large web depths (up to 603 mm).

For glued system options ensure that all noggins-to-beam, noggins-to-board and board-to-board surfaces are glued, and that the required setting time is allowed.

Remove any excess glue for neatness.

Any localised board shaping to be made at the point of installation should be carried out with a sharp knife or fine-toothed saw.

Avoid ‘nuisance dust’ from cutting operations lying on boards prior to installation Always use sharp-edged cutting tools.

The length of all nails used should be at least twice the thickness of the board being fixed.

Pigtail screw length should be twice the thickness of the board being fixed, less 5 mm. All board to board joints must be tightly butted.

Vapour barriers

Glass-reinforced aluminium foil-faced ROCKWOOL BEAMCLAD® A/V provides an excellent vapour seal. For integrity of the foil, all edges should be taped (with a minimum 75mm wide) plain foil tape. Idenden 203 tape is recommended as being suitable. Taped joints also prevent damage to foil edges during construction.

Board joints (glued)

No glue is required where boards meet wall or soffit surfaces, except in cases where a temporary fix to flange faces may be advantageous to the work sequence. Close contact between boards at joints is always essential.

Painted steel

Painting of structural steelwork is not always essential for corrosion protection. BS 8202: Part 1: 1995 permits the use of unpainted steel which is both interior to the building and in an area which will be constantly heated.

确定保护厚度

The table opposite indicates the effect on A/V for three and four sided designs. Determine A/V factor from the table or by calculating for other exposure situations, ensuring the correct mass per metre is used.

Establish the period of fire protection required.

For A/V factors in excess of 300, contact ROCKWOOL for advice on both thicknesses and fixing methods preferred.

Bracing members: These do not generally require protection. If required as an essential element to the fire resistance, use A/V factor greater than 200 m⁻¹.

Where steel beams are fixed to composite steel and concrete decks, the profiled re-entrant void may not need additional protection if allowances for board thickness or steelwork section factor are made.

See the ASP Yellow Book A.3.5 for current independent guidance.

Profiled re-entrant voids above steel beams will need to be infilled:

- Where steel beams are positioned to form a continuation of a compartment wall
- Where non-composite beams support a trapezoidal steel deck

通用系统注意事项

确保钢是清洁的，无油污、灰尘或松散颗粒，当需要固定木块时。

干燥钢材料，避免大水滴存在。钢材料摸起来干燥即可。

确保所有木块具有正确的摩擦间隙。避免过大的干涉可能会导致木块弯曲。

固定额外的木块（如果需要）在梁端，梁梁接头和大穿透。对于焊接螺钉系统，可能需要引入士兵木块到梁梁接头区域，以增加系统的稳定性。

对于胶粘系统选项确保所有木块到梁，木板到木板和板到板表面都是胶合的，并且需要设定时间。

移除多余的胶水以保持整洁。

任何局部板的形状在安装点处应该使用锋利的刀片或细齿锯。

避免在切割过程中产生的“烦恼灰尘”。

对于不使用尖锐的切割工具。

所有钉子的长度至少是板厚度的两倍。

螺钉的长度应该是板厚度的两倍，减去5毫米。所有板到板接头必须紧密但压紧。

蒸汽屏障

玻璃纤维增强铝箔面的ROCKWOOL BEAMCLAD® A/V提供优异的蒸汽密封。对于完整箔，所有边缘应采用普通箔封条带。Identeno 203胶带是推荐使用的作为合适的。胶合接头也防止损坏箔边缘在施工过程中。

板缝（胶合）

不需要胶水在板面或斜表面，除非在临时固定的情况下。

紧贴接触板在接头总是必要的。

油漆钢

油漆结构钢工作通常不是防腐保护所必需的。BS 8202: 第1部分：1995允许使用未涂漆钢，其在室内使用在建筑中并在一个会被经常加热的区域。

ROCKWOOL BEAMCLAD®厚度

在选择ROCKWOOL BEAMCLAD®厚度时，考虑必须给出的所需保护期的耐火性能和A/V值的钢柄设计信息。

供应

ROCKWOOL BEAMCLAD®铝箔供应在箔，胶囊卷在聚乙烯醇。螺钉是可从ROCKWOOL供料商获得的。焊接螺钉和弹簧钢不返洗的供应商。

参考文献

ROCKWOOL BEAMCLAD®系统是ROCKWOOL FIREPRO®范围的防火和保护范围。对构建解决方案以防止火灾蔓延和保护结构完整的建筑。
Section 2 – Building services

Building services are an essential part of nearly every building, whether it’s the distribution of cold and warm air through HVAC systems or providing active measures of fire protection through sprinkler systems they play an important role in all building types.

As building services often reach out to all parts of a building it is common for these services to pass through compartment walls and floors. In addition, some building services like smoke extract systems or sprinkler systems provide active measures of fire protection which often require their own level of fire resistance.

Ensuring that building services can operate safely and do not contribute towards the spread of fire within the building are key considerations for any fire safety strategy.

ROCKWOOL® provide a range of products which have been specially designed for fire protecting ductwork systems, sprinkler and service pipes for periods up to 2 hours on ductwork and 4 hours on service pipes.

Useful documents and standards

- ASFP Blue Book: Fire Resisting Ductwork
- ASFP Grey Book: Fire and smoke resisting dampers
- ASFP: Ensuring best practice for passive fire protection in buildings
- BS 476-24: Fire test on building materials and structures. Method for determination of the fire resistance of ventilation ducts
- BS EN 1366-1: Fire resistance test for service installations. Ventilation ducts
- BS EN 1366-8: Fire resistance test for service installations. Smoke extraction ducts
- BS EN 1363-1: Fire resistance tests. General requirements
- BS EN 13501-3: Fire classification using test data from resistance to fire tests on products and elements used in building service installations. Fire ducts and dampers
- BS EN 13501-4: Fire classification using test data from resistance to fire tests on components of smoke control systems

ASFP (Association for Specialist Fire Protection) guidance documents can be sourced at www.asfp.org.uk
FIREPRO® Fire Duct Systems

Description
Three products are available in the Fire Duct Systems range:
- Fire Duct Slab – for rectangular ducts
- Fire Duct Section – for circular ducts between 60mm and 356mm diameter
- Fire Duct PSM – for circular ducts greater than 406mm diameter

All three Fire Duct products are supplied faced on one side with reinforced aluminium foil.

Fire Duct Slab is a high density insulation slab faced with reinforced aluminium foil.

Fire Duct Section is a high density pre-formed pipe section faced with reinforced aluminium foil.

Fire Duct PSM is a high density slab with factory machined grooves to facilitate installation around a circular duct, faced with reinforced aluminium foil.

Advantages
- Quick and easy to install
- Fully certified to BS 476–24 (duct types A and B)
- ½, 1, 1½ and 2hour fire protection for stability, integrity and insulation
- Choice of fixing options
- Single layer, enabling verification of system installation
- Space efficient, non-brittle, strong and safe
- Multi-role insulation: fire protection, acoustic and thermal
- Can be installed on standard DW144/42 ductwork

Applications
System options – Rectangular ducts

Welded pin fixing method
Attachment by welded pins allows extremely rapid installation with slab joints simply butted together.

Welded pins are generally spaced at 350mm maximum centres along the length of the duct and at 500mm maximum centres across the width and depth of the duct. Pins are required on all four sides of vertical ducts, but may be omitted from the top face of horizontal ducts, see Figures 5 and 6 on page 10.

Longitudinal corner joints fixed with pigtail screws at 250mm maximum centres (screw length to be 2 x slab thickness). Side wall slabs must overlap top and bottom slabs (as shown). Cross joints bonded with FIREPRO® Glue.

Alternative joint methods
Instead of pigtail screws, longitudinal joints can be fixed with FIREPRO® Glue and nails, at 500mm max. centres.

Instead of glue, cross joints can be protected with centrally positioned, 100mm wide Fire Duct strips fixed along both edges with pigtail screws at 250mm max. centres.

Mitre-joint fixing methods
The use of mitre-joints at slab corners allows installation in situations where welding may not be practical.

Mitre-joint method
All joints bonded with ROCKWOOL FIREPRO® Glue. Longitudinal corner joints secured with nails while ROCKWOOL FIREPRO® Glue cures.
System options – Circular ducts

Fire Duct Section
Circular steel ducts of between 60mm and 356mm diameter may be protected using Fire Duct Section. Fire Duct Section must be glued with ROCKWOOL FIREPRO® Glue at the joints and in the grooves. Steel bands or wires must be fitted circumferentially to the system at 300mm nominal centres to hold all joints and grooves tightly closed while the glue cures.

Where required, cover strips and bearer protection pieces are to be cut from Fire Duct Section (or Fire Duct PSM) of the appropriate diameter. The foil covering is to be removed from the area of Fire Duct Section immediately beneath the cover strips prior to gluing into position and securing with steel nails or pins.

All joints are to be securely taped with 75mm wide plain soft aluminium foil self-adhesive tape (Idenden type T303, or similar and approved) to maintain a continuous vapour barrier.

The hanger system is as described on page 6 of our FIREPRO® Brochure and as shown in Figures 1 and 2, with the angle bearer formed into a circular shape to suit the diameter of the duct or the Fire Duct Section (depending on whether the hanger is located inside or outside the protection).

Fire Duct Section is used to protect the drop rods as described on page 8 of this brochure. General installation principles are as otherwise described in this Product Data Sheet for Fire Duct Slab.

Fire Duct PSM
Circular steel ducts of 406mm and greater diameter may also be protected using Fire Duct PSM.

Fire Duct PSM must be glued at the joints and in the grooves with ROCKWOOL FIREPRO® Glue. Steel bands or wires must be fitted circumferentially to the system at 300mm nominal centres to hold all joints and grooves tightly closed while the glue cures.

General duct, hanger and installation details are as described for Fire Duct Section.

Key to Figures 1 and 2
1. Circular steel duct to DW/144
2. Fire Duct Section/Fire Duct PSM
3. M10 steel drop rods at 1500mm maximum centres
4. Fire Duct Slab/Section – protection to hanger system
5. 30 x 30 x 3mm minimum steel angle bearer

Performance

Fire Duct Slab & Fire Duct PSM
Non-combustibility: Class A1 to BS EN 13501-1

Fire Duct Section
Non-combustibility: Class A2 to BS EN 13501-1

Fire resistance
Performance summary – Fire Duct Slab, Section and PSM.

Three performance criteria; stability, integrity and insulation, are required in equal measure for all ducts which pass through fire-rated walls or floors.

Fire Duct System test data

The Fire Duct products have been tested and assessed by the Loss Prevention Certification Board (LPCB) of the BRE in accordance with BS 476 – 24, ‘Fire tests on building materials and structures – Methods for determination of the fire resistance of ventilation ducts’. Fire Duct products can be used to provide fire protection to horizontal, vertical, rectangular, circular, ventilation and smoke extract steel ductwork fully in accordance with BS 476 – 24, ducts ‘Type A’ and ‘Type B’, “Fire outside duct” and “Fire inside duct”.

The ½, 1, 1½, and 2 hour periods of fire resistance stated in this manual are for stability, integrity and insulation in equal measure. For example, the 60 minutes duct constructions shown are certified for 60 minutes stability, 60 minutes integrity and 60 minutes insulation.

pH Neutrality

ROCKWOOL insulation is chemically compatible with all types of pipes, ducts, equipment and fittings. (Guidance is given in BS 5970 regarding the treatment of austenitic stainless steel pipework and fittings). Stone wool insulation is chemically inert. A typical aqueous extract of ROCKWOOL insulation is neutral or slightly alkaline (pH 7 to 9.5).

Standards & approval

The product has been authorised for use in LUL surface and sub-surface premises when installed in accordance with this data sheet – please refer to the LUL Approved Product Register website www.LU-apr.co.uk for specific details.

Fire Duct Systems are third party approved by the Loss Prevention Council Certification board (LPCB) for performance and quality and are listed in the “Red Book” – certificate no. 022f. Certificates can be accessed online at www.redbooklive.com. www.LU-apr.co.uk

‘Kitchen extract’ ducts

These are subject to separate BS 476-24 requirements and are additionally covered for ½ and 1 hour protection periods.

<table>
<thead>
<tr>
<th>Fire resistance (hours)</th>
<th>Duct type</th>
<th>Required Fire Duct thickness (mm)</th>
<th>Joint options</th>
<th>Hanger protection Fire Duct Slab (mm)</th>
<th>Hanger protection Hanger Section (mm)</th>
<th>Max. duct size for mitre-joint, glued system (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>½</td>
<td>HVAC & smoke extract</td>
<td>40</td>
<td>BC</td>
<td>40</td>
<td>17 x 30</td>
<td>1500 x 1500</td>
</tr>
<tr>
<td>½</td>
<td>Kitchen extract</td>
<td>40</td>
<td>BC</td>
<td>40</td>
<td>17 x 30</td>
<td>1500 x 1500</td>
</tr>
<tr>
<td>1</td>
<td>HVAC & smoke extract</td>
<td>40</td>
<td>BC</td>
<td>40</td>
<td>17 x 40</td>
<td>1000 x 1000</td>
</tr>
<tr>
<td>1</td>
<td>Kitchen extract</td>
<td>90</td>
<td>ABC</td>
<td>40</td>
<td>17 x 40</td>
<td>1500 x 1500</td>
</tr>
<tr>
<td>1½</td>
<td>HVAC & smoke extract</td>
<td>70</td>
<td>ABC</td>
<td>50</td>
<td>17 x 50</td>
<td>1200 x 1200</td>
</tr>
<tr>
<td>2</td>
<td>HVAC & smoke extract</td>
<td>90</td>
<td>ABC</td>
<td>60</td>
<td>17 x 70</td>
<td>1000 x 1000</td>
</tr>
</tbody>
</table>
Product information

Dimensions

Fire Duct Slab
- Size: 1200 x 2000mm
- Thicknesses: 40, 50, 70 and 90mm*
- Facing: reinforced aluminium foil

Fire Duct Section
- Diameters: 60 to 356mm
- Thicknesses: 30, 40 and 90mm*
- Facing: reinforced aluminium foil

Fire Duct PSM
(Made of Fire Duct Slab with factory machined grooves to suit specific duct diameters)
- Diameters: 406mm and above*
- Thicknesses: 40 and 90mm*
- Facing: reinforced aluminium foil

Fire Duct Section for use on hangers
- Nominal OD from 17mm
- Thicknesses: from 30mm*
- Facing: reinforced aluminium foil

Durability
ROCKWOOL stone wool insulation products have been proven in service for over 60 years, in a wide range of climates and degrees of exposure. ROCKWOOL insulation will generally perform effectively for the lifetime of the building, plant or structure.

Biological
ROCKWOOL stone wool is a naturally inert and rot-proof material that does not encourage or support the growth of fungi, moulds or bacteria, or offer sustenance to insects or vermin.

*Some thicknesses may be subject to minimum order quantities. Some combinations of diameter and thickness may not be available or may be subject to a minimum order quantity.

Installation instructions

Hangers, bearers and flanges
Fire Duct products are approved to provide fire protection to steel ductwork, wholly constructed using steel fixings in accordance with current B&ES specification DW/144 and superseded specification DW/142.

Where there are constructional options within DW/144 and DW/142, these are expanded upon below. These details are primarily concerned with duct joint types and the suspension method.

DW/142 flanged cross joint types J3, J4, J5 and J6 are acceptable for use with the Fire Duct System, without modification.

Fire Duct Slab, Fire Duct Section or Fire Duct PSM may be installed either outside or inside the hanger system.

Bearers will require additional protection only when positioned outside the Fire Duct layer.

Drop rods will normally be protected with Fire Duct Section or with Fire Duct Slab blocks (see Figure 4).

Alternatively, the support steelwork may be sized so that separate protection is not required. Design of this ‘unprotected support’ method is independent of the Fire Duct System.

Protection of hangers outside Fire Duct System
Hangers outside the Fire Duct System are protected by cutting a rebate into a block of Fire Duct Slab, Fire Duct PSM or Fire Duct Section.

The rebate should be no larger than necessary to accommodate the bearer. The block should be glued and pinned in position (see Figure 3, Option A) or secured using pigtail screws.

Other J Joints
If type J1 or J2 cross joints are fitted, then the joints must be upgraded to at least the J3 specification. This can be done by adding steel fixing bolts and fastenings in line with the J3 joint type. Also a minimum S3 stiffener should be fitted to the duct adjacent to the cross joint. This will upgrade the cross-sectional stiffness of the duct.

* DW/144 and DW/142 do not specifically cover ducts larger than 3m wide. Please contact ROCKWOOL for details (contact details on back cover).
ROCKWOOL FIREPRO® Glue

ROCKWOOL FIREPRO® Glue has a pH value of 11. It is available in 300ml cartridges or 17kg tubs. Always stir the tubs before use.

Where required, 1-1.5mm of glue should be applied to each Fire Duct joint. The glue is generally applied by spatula or trowel.

Where present, any foil facing must be removed from surfaces prior to the application of FIREPRO® Glue. Take care to remove any FIREPRO® Glue from all aluminum foil surfaces with a damp cloth.

Nails (for use only with mitre-joint ‘glued’ systems)

The nail length is to be 2 x board thickness (see Figure 7 for positions)

Pigtail screws

Pigtail screws are to be used at all corner joints where FIREPRO® Glue is not used, and to secure cross joint cover strips.

Pigtail screws are to be positioned at 250mm maximum centres, and the screw length is to be 2 x slab thickness.

For horizontal ducts, pigtail screws must be inserted horizontally.

Optional edge protection

Light gauge metal angles may be glued in position to provide optional edge protection. The metal angles must be de-greased. Small pins may be required to hold the angle to the underside of the duct.

Vapour barrier

Where a vapour barrier is required, all exposed Fire Duct edges and penetrations through the foil must be sealed using aluminum foil tape.

Wall penetrations, elbows, 2 and 3-sided applications and access hatches

Wall and floor penetrations

Support to duct sides is required at all penetrations for stability purposes. This support can be provided by:

- A 30 x 30 x 2mm mild steel angle frame fixed to the duct at the penetration mid-point. Steel rivets should be used at 300mm maximum centres (Figure 8),
- Locating the duct joint at the penetration mid-point.

In all cases, low density ROCKWOOL stone wool, typically RWA45, is packed tightly into the void between the Fire Duct product and the wall opening.

120mm wide blocks of Fire Duct are glued (or secured with pigtail screws) to the duct insulation and to the wall on both sides of the penetration.

All Fire Duct to wall joints are glued. Aluminium foil is located in Fire Duct joints at wall penetrations (as shown).

Proprietary penetration seals

Where proprietary penetration seals are used, compatibility with the separating element, duct construction and Fire Duct System must be demonstrated by independent test or assessment.

Elbows (rectangular ducts)

Small elbows may simply be boxed or ‘squared off’. Larger elbows may need to be protected by cutting fan shaped pieces, generally in accordance with the illustration (Figure 9).

2 and 3-sided applications (rectangular ducts)

The use of Fire Duct products incorporating welded pins is recommended for 2 and 3-sided applications.

The method illustrated (Figure 10) for three-sided applications, may also be used for two-sided applications where the duct is securely braced in the corner of a room.
Access hatches (rectangular ducts)

Steel access hatches which are constructed and fitted in accordance with DW/144 may be protected with Fire Duct Slab (Figure 11).

The Fire Duct cover may be fitted in any face of the duct. However, if the sliding cover is not in the horizontal plane the guides must be positioned so as to prevent movement of the cover due to weight, vibration etc.

The sliding cover must be a tight fit in the guides. No part of the arrangement may be within 50mm of edges or joints within the main duct protection layer of Fire Duct Slab.

All Fire Duct Slab joints (excluding sliding joints) are to be glued and pinned as previously detailed.

Access hatches (circular ducts)

Details of access hatches for circular ducts are available on request.

Handling

The Fire Duct range of products is light, easy to handle and simple to fix. The products can be cut and shaped using knives, saws, etc.

Ancillaries

Welded steel pins

Welded pins are generally spaced at 350mm maximum centres along the length of the duct and at 500mm maximum centres across the width and depth of the duct. Pins are required on all four sides of vertical ducts, but may be omitted from the top face of horizontal ducts (see Figures 5 and 6).

Details of alternative mechanically fixed pins are available from ROCKWOOL on request.

Criteria for preparation of ductwork prior to insulation

Fire Duct products are certified to provide fire protection to ductwork conforming to Construction Details 1 to 12 in the table below and to the requirements of B&ES Specification DW/144. The table may be used as a check list for on-site verification of ductwork construction.

<table>
<thead>
<tr>
<th>Construction detail</th>
<th>Requirement</th>
<th>Details of modification where needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Duct sheeting</td>
<td>Rigid steel (pinc-coated, alu-zinc coated, black or stainless)</td>
<td></td>
</tr>
<tr>
<td>2. Sheet thickness</td>
<td>0.8mm or greater. See DW/144 for ducts larger than 1500mm</td>
<td></td>
</tr>
<tr>
<td>3a. Welded pin fixing methods</td>
<td>Up to 1500 x 1500 mm: no additional system modifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up to 2000 x 2000mm: increase angle bearer size to 50 x 50 x 5mm min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up to 3000 x 3000mm: increase angle bearer size to 50 x 50 x 6mm min</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Increase drop rod diameter to M12 mm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Up to 4000 x 4000mm: 50 x 50 x 6mm min. bearer: M12 min. drop rod</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incorporate additional drop rod mid-width through duct and bearer*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weld (or fasten with with nuts and large washers) M15 min. strengthening rod at mid-width of each flanged joint and penetration point to maintain cross section</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seal all holes with mastic</td>
<td></td>
</tr>
<tr>
<td>3b. Mitre-joint fixing methods</td>
<td>If duct dimensions exceed those shown, use welded steel pins as per Fire Duct system manual (see item 3a)</td>
<td></td>
</tr>
<tr>
<td>4. Flanged cross joint</td>
<td>Type J3, J4, J5 or J6 to HVAC specification DW/142 and DW/144</td>
<td></td>
</tr>
<tr>
<td>5. Joint seal</td>
<td>May be included or omitted</td>
<td></td>
</tr>
<tr>
<td>6. Constructional fixings</td>
<td>Steel</td>
<td></td>
</tr>
<tr>
<td>7. Bearers</td>
<td>30 x 30 x 3mm (min.) steel angle. See item 3a for ducts larger than 1500mm</td>
<td></td>
</tr>
</tbody>
</table>

Figure 11
Removable cover panel for steel access hatch

Openings in Fire Duct Slab to accommodate DW144 close access panel (or similar) max opening 900 x 900 mm guides (guide required on third side for openings larger than 500 x500 mm)

Fire Duct Slab thickness as appropriate to fire protection required, tight fit in guides

Light gauge steel formed into channel ‘runners’ (thickness typically 0.5 mm, 1.0mm max)
Fire protection: Section 2 - Building services

Welded pin fixing method

1. All ductwork is to be insulated with*mm ROCKWOOL Fire Duct Slab, having a factory applied reinforced aluminium foil to one face and complying with Building Regulations Class 'O' requirements.
2. All joints are to be filled with FIREPRO® Glue and held tightly closed. Use nails at 500mm centres at corner points to aid this process.
3. The Fire Duct sections at ductwork corners are to be 45° mitred. Square butt joints to be used elsewhere.
4. All mitred joints are to be held tightly closed with nails (length = approx. 2 x Fire Duct Slab thickness) until the glue has fully cured. 4 nails juxtaposed at 90° are to be located at 3 points per 1200mm length of mitred joint and at 5 points per 2000mm length.
5. All joints are to be filled with FIREPRO® Glue and held tightly closed.
6. Drop rods and bearers are to be at 1500mm maximum centres and to be M10 steel rod and 30 x 30 x 3mm steel angle respectively. Ductwork is to be generally in accordance with B&ES Specification DW/144.
7. All joints are to be filled with FIREPRO® Glue and held tightly closed.
8. Where a vapour barrier is required, all exposed Fire Duct edges and penetrations through the foil should be sealed using soft self-adhesive aluminium foil tape (Idenden type T303, or similar and approved).

Specification clauses

Typical specification clauses for rectangular ducts to be read in conjunction with system options on pages 4 and 5

- **Construction detail**
- **Requirement**
- **Details of modification where needed**

<table>
<thead>
<tr>
<th>Construction detail</th>
<th>Requirement</th>
<th>Details of modification where needed</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Drop rods</td>
<td>Fire protect steelwork</td>
<td></td>
</tr>
<tr>
<td>9. Drop rod anchors</td>
<td>Steel frame to be independently fire rated</td>
<td>Fire protect steelwork</td>
</tr>
<tr>
<td>Fixed through steel suspension frame</td>
<td>Anchors to have confirmed fire rating, M10 (min.) mild steel. See item 3a for ducts larger than 2000mm</td>
<td>If fire rating is un-confirmed and anchor is all-steel, ie without plastic or chemical components; affix 300mm x 300mm collar of unfaced Fire Duct Slab to soffit with FIREPRO® Glue, keeping anchor central. Collar thickness to equal duct encasement layer. Optional self-tapping screws may be used to support collar. Glue adjacent Fire Duct drop rod protection to collar</td>
</tr>
<tr>
<td>Fixed into concrete</td>
<td>All cross joints are to be covered with centrally positioned 100mm wide strips of Fire Duct Slab of the same thickness as the insulation. The cover strips are to be fixed along both edges using pigtail screws at 250mm max. centres. * Insert Fire Duct Slab insulation thickness required. † Insert appropriate overall diameter.</td>
<td></td>
</tr>
<tr>
<td>10. Spacing of suspension system</td>
<td>1500mm max. centres</td>
<td>Install additional supports</td>
</tr>
<tr>
<td>10a. Horizontal ducts</td>
<td>Support at every floor (4 m max. centres)</td>
<td></td>
</tr>
<tr>
<td>10b. Vertical ducts: 2 or 3 sided protection</td>
<td>Support at every floor (4 m max. centres)</td>
<td></td>
</tr>
<tr>
<td>10c. Vertical ducts: 4 sided protection</td>
<td>Support at every floor (4 m max. centres)</td>
<td></td>
</tr>
<tr>
<td>11. Stiffening of duct at penetration detail</td>
<td>Duct flange or 30 x 30 x 3mm steel angle frame fixed with steel fixings at 300mm max. centres. To be positioned within the width of the penetration. See item 3a for ducts larger than 2000mm.</td>
<td>Install steel angle frame</td>
</tr>
<tr>
<td>12. Compartment wall</td>
<td>Fire rated masonry, concrete, brick, block, plasterboard or other fire rated construction</td>
<td></td>
</tr>
</tbody>
</table>

Alternative longitudinal joints

Delete clauses 3 and 5 in Method 1 above, and insert new clause 5:
1. All joints are to be filled with ROCKWOOL FIREPRO® Glue and held tightly closed. Use nails at 500mm centres at corner points to aid this process.

Alternative cross joints

Delete clauses 3 and 5 in Method 1 above, and insert new clause 5:
1. All cross joints are to be covered with centrally positioned 100mm wide strips of Fire Duct Slab of the same thickness as the insulation. The cover strips are to be fixed along both edges using pigtail screws at 250mm max. centres.

Mitre-joint fixing method

1. All ductwork is to be insulated with*mm Fire Duct Slab, having a factory applied reinforced aluminium foil to one face and complying with Building Regulations Class 'O' requirements.
2. The Fire Duct joints at ductwork corners are to be 45° mitred. Square butt joints to be used elsewhere.
3. The foil facing is to be removed from any surfaces to which FIREPRO® Glue is to be applied.
4. All joints are to be filled with FIREPRO® Glue and held tightly closed.
5. All mitred joints are to be held tightly closed with nails (length = approx. 2 x Fire Duct Slab thickness) until the glue has fully cured. 2 nails juxtaposed at 90° are to be located at 3 points per 1200mm length of mitred joint and at 5 points per 2000mm length.
6. Drop rods and bearers are to be at 1500mm maximum centres and to be M10 steel rod and 30 x 30 x 3mm steel angle respectively. Ductwork is to be generally in accordance with B&ES Specification DW/144.
7. All drop rods and exposed bearers are to be insulated with*mm Fire Duct Slab or† x*mm Fire Duct Section, as appropriate. Rebates or cover pieces are to be used at duct flange and bearer locations according to site conditions and subject to ROCKWOOL approval.
8. Where a vapour barrier is required, all exposed Fire Duct edges and penetrations through the foil should be sealed using soft self-adhesive aluminium foil tape.

NBS specifications

ROCKWOOL Fire Duct Systems are associated with the following NBS clauses:
- U90 General ventilation - domestic
 - 490 Site applied insulation to ductwork
- Y30 Mechanical thermal insulation
 - 340 Mineral fibre slabs insulation
RockLap H&V Pipe Sections

Advantages
- Resilient, high performance barrier provided by one piece, reinforced foil with integral lap
- Fast and simple installation reduces costs and time on site
- Tape requirement reduced
- European Reaction to Fire Classification of A2L, s1,d0

Applications
RockLap H&V Pipe Sections are strong lengths of pre-formed insulation with a one piece, factory applied foil facing with integral self-adhesive lap. The integral lap ensures fast and easy installation: just snap the sections onto the pipe, peel off the backing tape and smooth down for a completely sealed joint.

Performance
Standards and approvals
ROCKWOOL H&V Pipe Sections are CE marked in accordance with BS EN 14303. For more information please visit www.rockwool.co.uk/DOP

RockLap H&V Pipe Sections conform to BS 3958–4, ‘Bonded preformed stone wool pipe sections’ and can be used to satisfy BS 5422: ‘Method for specifying thermal insulating materials…….’

The product has been authorised for use in LUL surface and sub-surface premises when installed in accordance with this data sheet – please refer to the LUL Approved Product Register website www.LU-apr.co.uk for specific details.

Fire
RockLap H&V Pipe Sections are rated Euroclass A2L*-s1,d0.
*Classifications for linear pipe thermal insulation products are followed by the sub-index ‘L’ (for example, A2L).

Thermal
The specific heat of ROCKWOOL stone wool is 0.84 kJ/kgK (nom.) at 20°C.

Thermal conductivity and thermal loss

<table>
<thead>
<tr>
<th>Temperature °C</th>
<th>*Curve 1 (W/mK)</th>
<th>*Curve 2 (W/mK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.033</td>
<td>0.034</td>
</tr>
<tr>
<td>50</td>
<td>0.037</td>
<td>0.039</td>
</tr>
<tr>
<td>100</td>
<td>0.044</td>
<td>0.048</td>
</tr>
<tr>
<td>150</td>
<td>0.052</td>
<td>0.056</td>
</tr>
</tbody>
</table>

*The thermal conductivity curve used depends upon the size of the pipe section. For further information please refer to the DOP.

Note: Due to the low emissivity of aluminium, heat losses, which depend upon the diameter, thickness and temperature of the pipe to be insulated, are reduced by approx. 9% by using aluminium faced sections compared with painted or PVC faced sections.

Consider a 169 mm O.D. hot water pipe running at 75°C with an ambient temperature of 15°C insulated with 50 mm thick RockLap H&V Pipe Section:

<table>
<thead>
<tr>
<th>Cladding type</th>
<th>Emissivity (Ɛ)</th>
<th>Outer surface temp (°C)</th>
<th>Heat loss (W/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aluminium</td>
<td>0.05</td>
<td>24.4</td>
<td>27</td>
</tr>
<tr>
<td>Cloth</td>
<td>0.90</td>
<td>19.5</td>
<td>29</td>
</tr>
</tbody>
</table>
Table 8: (BS5422:2009)
Minimum thickness of ROCKWOOL RockLap H&V to prevent condensation. Taken from BS 5422 Table 8, ambient air temperature 25°C, 80% rh, $\varepsilon=0.05$

<table>
<thead>
<tr>
<th>Outside diameter of steel pipe on which insulation has been based (mm)</th>
<th>Temperature of contents +10°C (°C)</th>
<th>Temperature of contents +5°C (°C)</th>
<th>Temperature of contents 0°C (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>16</td>
<td>20</td>
<td>28</td>
</tr>
<tr>
<td>21</td>
<td>17</td>
<td>20</td>
<td>24</td>
</tr>
<tr>
<td>27</td>
<td>19</td>
<td>20</td>
<td>26</td>
</tr>
<tr>
<td>33</td>
<td>20</td>
<td>20</td>
<td>27</td>
</tr>
<tr>
<td>42</td>
<td>21</td>
<td>25</td>
<td>31</td>
</tr>
<tr>
<td>48</td>
<td>22</td>
<td>25</td>
<td>33</td>
</tr>
<tr>
<td>60</td>
<td>24</td>
<td>25</td>
<td>36</td>
</tr>
<tr>
<td>76</td>
<td>26</td>
<td>30</td>
<td>38</td>
</tr>
<tr>
<td>89</td>
<td>28</td>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>102</td>
<td>29</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>114</td>
<td>30</td>
<td>30</td>
<td>52</td>
</tr>
<tr>
<td>140</td>
<td>31</td>
<td>35</td>
<td>55</td>
</tr>
<tr>
<td>169</td>
<td>33</td>
<td>35</td>
<td>58</td>
</tr>
<tr>
<td>219</td>
<td>35</td>
<td>35</td>
<td>62</td>
</tr>
<tr>
<td>245</td>
<td>36</td>
<td>40</td>
<td>64</td>
</tr>
<tr>
<td>273</td>
<td>37</td>
<td>40</td>
<td>66</td>
</tr>
<tr>
<td>324</td>
<td>39</td>
<td>40</td>
<td>70</td>
</tr>
<tr>
<td>356</td>
<td>40</td>
<td>40</td>
<td>71</td>
</tr>
<tr>
<td>406</td>
<td>41</td>
<td>45</td>
<td>74</td>
</tr>
<tr>
<td>456</td>
<td>43</td>
<td>45</td>
<td>76</td>
</tr>
<tr>
<td>508</td>
<td>44</td>
<td>45</td>
<td>78</td>
</tr>
<tr>
<td>558</td>
<td>45</td>
<td>45</td>
<td>80</td>
</tr>
<tr>
<td>610</td>
<td>46</td>
<td>50</td>
<td>82</td>
</tr>
</tbody>
</table>

Table 15: (BS5422:2009)
Indicative thickness of insulation for non-domestic heating services to control heat loss – low emissivity outer surfaces ($\varepsilon=0.05$).

<table>
<thead>
<tr>
<th>Outside diameter of steel pipe on which insulation has been based (mm)</th>
<th>75</th>
<th>100</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2</td>
<td>24</td>
<td>25</td>
<td>13.34</td>
</tr>
<tr>
<td>21.3</td>
<td>28</td>
<td>30</td>
<td>13.56</td>
</tr>
<tr>
<td>26.9</td>
<td>31</td>
<td>35</td>
<td>18.30</td>
</tr>
<tr>
<td>33.7</td>
<td>33</td>
<td>35</td>
<td>19.20</td>
</tr>
<tr>
<td>42.4</td>
<td>35</td>
<td>35</td>
<td>19.25</td>
</tr>
<tr>
<td>48.3</td>
<td>37</td>
<td>40</td>
<td>20.17</td>
</tr>
<tr>
<td>60.3</td>
<td>39</td>
<td>40</td>
<td>21.96</td>
</tr>
<tr>
<td>76.1</td>
<td>44</td>
<td>45</td>
<td>24.21</td>
</tr>
<tr>
<td>88.9</td>
<td>45</td>
<td>45</td>
<td>25.99</td>
</tr>
<tr>
<td>114.3</td>
<td>47</td>
<td>50</td>
<td>29.32</td>
</tr>
<tr>
<td>139.7</td>
<td>48</td>
<td>50</td>
<td>32.47</td>
</tr>
<tr>
<td>168.3</td>
<td>49</td>
<td>50</td>
<td>36.04</td>
</tr>
<tr>
<td>219.1</td>
<td>50</td>
<td>50</td>
<td>42.16</td>
</tr>
<tr>
<td>273.0</td>
<td>50</td>
<td>50</td>
<td>48.48</td>
</tr>
</tbody>
</table>

Note 1: Insulation thicknesses in this table have been calculated according to BS EN ISO 12241:2008 using standardised assumptions: horizontal pipe in still air at 15°C, emissivity of outer surface of insulated system as specified.

Note 2: Heat loss relates to the specified thickness and temperature.

Note 3: The thicknesses in this table are applicable to pipes serving commercial solar hot water panels.
Table 17: (BS5422:2009)
Indicative thickness of insulation for non-domestic hot water service areas to control heat loss – Low emissivity outer surface (Ɛ=0.05).

<table>
<thead>
<tr>
<th>Outside diameter of steel pipe on which insulation has been based (mm)</th>
<th>Thickness of ROCKWOOL RockLap H&V Pipe Section (mm)</th>
<th>Calculated thickness (mm)</th>
<th>Advised thickness (mm)</th>
<th>Heat loss / Wm⁻¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.2</td>
<td>23</td>
<td>25</td>
<td>6.60</td>
<td></td>
</tr>
<tr>
<td>21.3</td>
<td>25</td>
<td>25</td>
<td>7.13</td>
<td></td>
</tr>
<tr>
<td>26.9</td>
<td>27</td>
<td>30</td>
<td>7.83</td>
<td></td>
</tr>
<tr>
<td>33.7</td>
<td>29</td>
<td>30</td>
<td>8.62</td>
<td></td>
</tr>
<tr>
<td>42.4</td>
<td>30</td>
<td>30</td>
<td>9.72</td>
<td></td>
</tr>
<tr>
<td>48.3</td>
<td>32</td>
<td>35</td>
<td>10.21</td>
<td></td>
</tr>
<tr>
<td>60.3</td>
<td>33</td>
<td>35</td>
<td>11.57</td>
<td></td>
</tr>
<tr>
<td>76.1</td>
<td>35</td>
<td>35</td>
<td>13.09</td>
<td></td>
</tr>
<tr>
<td>88.9</td>
<td>35</td>
<td>35</td>
<td>14.58</td>
<td></td>
</tr>
<tr>
<td>114.3</td>
<td>38</td>
<td>40</td>
<td>17.20</td>
<td></td>
</tr>
<tr>
<td>139.7</td>
<td>39</td>
<td>40</td>
<td>19.65</td>
<td></td>
</tr>
<tr>
<td>168.3</td>
<td>40</td>
<td>40</td>
<td>22.31</td>
<td></td>
</tr>
<tr>
<td>219.1</td>
<td>40</td>
<td>40</td>
<td>27.52</td>
<td></td>
</tr>
<tr>
<td>273.0</td>
<td>41</td>
<td>45</td>
<td>32.40</td>
<td></td>
</tr>
</tbody>
</table>

Note 1: Insulation thicknesses in this table have been calculated according to BS EN ISO 12241:2008 using standardised assumptions: horizontal pipe at 60°C in still air at 15°C, emissivity of outer surface of insulated system as specified.

Note 2: Heat loss relates to the specified thickness and temperature.

Density
The nominal density is not less than 120kg/m³.

Other product properties

Water resistance
RockLap H&V Pipe Sections are water repellent. However, when used or stored in the open, the insulation should be protected with a waterproof covering. When used to insulate cold pipes, the joints should be sealed with foil tape to prevent condensation.

Service temperature
RockLap H&V Pipe Sections are used to insulate pipes operating at temperatures in the range 0 to 250°C. The sections are used to insulate against frost damage. For hot pipes, the limiting temperature of the outer foil face is 80°C to maintain facing bond strength.

pH neutrality
ROCKWOOL insulation is chemically compatible with all types of pipes, equipment and fittings. (Guidance is given in BS 5970 regarding the treatment of austenitic stainless-steel pipework and fittings). Stone wool insulation is chemically inert. A typical aqueous extract of ROCKWOOL insulation is neutral or slightly alkaline (pH 7 to 9.5).

Durability
ROCKWOOL stone wool insulation products have been proven in service for over 60 years, in a wide range of climates and degrees of exposure. ROCKWOOL insulation will generally perform effectively for the lifetime of the building, plant or structure.

Biological
ROCKWOOL stone wool is a naturally inert and rot-proof material that does not encourage or support the growth of fungi, moulds or bacteria, or offer sustenance to insects or vermin.

Installation
RockLap H&V Pipe Sections are supplied with an integral self-adhesive overlap. Place the section around the pipe and seal accordingly (Figure 1).

All joints between RockLap sections must be sealed with aluminium foil tape (Figure 2).

Handling
RockLap H&V Pipe Sections are easy to cut to any shape with a sharp knife. When stored outside, avoid contact with the ground and cover with a securely anchored waterproof sheet.

Maintenance
Once installed RockLap H&V Pipe Sections shouldn’t require any maintenance.

Specification clauses

Typical specification
Pipes to be insulated with...... *mm thick ROCKWOOL Rocklap H&V Pipe Sections, having a nominal density not less than 120kg/m³, with a factory applied facing which is a laminate of close mesh reinforcement between two layers of foil including integral lap for fixing. The whole to comply with BS 5422:2009 and BS 5970 water vapour permeance and Building Regulation requirements in relation to thermal and fire. Fixing to be in accordance with manufacturer’s instructions, by peeling protective tape from self-adhesive lap and pressing lap smoothly over joint. Where adjacent Sections abut, approved 75 mm wide aluminium tape to be used to maintain integrity of the vapour barrier.

For external applications please see HVAC Specification Detail Guide for external finishes.

*insert required thickness
Other guidance

Available standard dimensions and packaging matrix.

<table>
<thead>
<tr>
<th>To Suit Pipe O.D. / mm</th>
<th>Insulation Thickness / mm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
</tr>
<tr>
<td>17</td>
<td>42 (1)</td>
</tr>
<tr>
<td>21</td>
<td>36 (1)</td>
</tr>
<tr>
<td>27</td>
<td>30 (1)</td>
</tr>
<tr>
<td>34</td>
<td>25 (1)</td>
</tr>
<tr>
<td>42</td>
<td>20 (1)</td>
</tr>
<tr>
<td>48</td>
<td>16 (1)</td>
</tr>
<tr>
<td>54</td>
<td>16 (1)</td>
</tr>
<tr>
<td>60</td>
<td>12 (1)</td>
</tr>
<tr>
<td>67</td>
<td>9 (1)</td>
</tr>
<tr>
<td>76</td>
<td>9 (1)</td>
</tr>
<tr>
<td>80</td>
<td>9 (1)</td>
</tr>
<tr>
<td>89</td>
<td>6 (1)</td>
</tr>
<tr>
<td>102</td>
<td>5 (1)</td>
</tr>
<tr>
<td>108</td>
<td>5 (1)</td>
</tr>
<tr>
<td>114</td>
<td>4 (1)</td>
</tr>
<tr>
<td>127</td>
<td>4 (1)</td>
</tr>
<tr>
<td>133</td>
<td>4 (1)</td>
</tr>
<tr>
<td>140</td>
<td>4 (1)</td>
</tr>
<tr>
<td>150</td>
<td>4 (1)</td>
</tr>
<tr>
<td>154</td>
<td>4 (1)</td>
</tr>
<tr>
<td>159</td>
<td>4 (1)</td>
</tr>
<tr>
<td>169</td>
<td>4 (1)</td>
</tr>
<tr>
<td>178</td>
<td>4 (1)</td>
</tr>
<tr>
<td>191</td>
<td>4 (1)</td>
</tr>
<tr>
<td>194</td>
<td>4 (1)</td>
</tr>
<tr>
<td>205</td>
<td>4 (1)</td>
</tr>
<tr>
<td>219</td>
<td>4 (1)</td>
</tr>
<tr>
<td>230</td>
<td>4 (1)</td>
</tr>
<tr>
<td>245</td>
<td>4 (1)</td>
</tr>
<tr>
<td>253</td>
<td>4 (1)</td>
</tr>
<tr>
<td>273</td>
<td>4 (1)</td>
</tr>
<tr>
<td>279</td>
<td>4 (1)</td>
</tr>
<tr>
<td>305</td>
<td>4 (1)</td>
</tr>
<tr>
<td>318</td>
<td>4 (1)</td>
</tr>
<tr>
<td>324</td>
<td>4 (1)</td>
</tr>
<tr>
<td>356</td>
<td>4 (1)</td>
</tr>
<tr>
<td>406</td>
<td>4 (1)</td>
</tr>
</tbody>
</table>

1 or 2 Applicable DOP Lambda Curve

* Size available to order

| Size currently not available

These sections come “split” and are packed as single lengths which are shrink wrapped in polyethylene

Distribution losses from a heating or cooling system can account for as much as 20% of the total energy used in a building.

Alternative sizes may be available. For further details please contact ROCKWOOL Customer Support.
DuctRock® Slab

Description

FIREPRO® DuctRock® Slab is manufactured with high density, non-combustible stone wool insulation and finished with a high emissivity black foil facing. Available in three thicknesses DuctRock® Slab is easy to handle, simple to install and capable of achieving fire resistance of up to EI 120.

FIREPRO® Glue and a high performance Black Aluminium Foil Tape are also readily available from ROCKWOOL for sealing all board joints.

Advantages

- EI 120 on Ventilation & Smoke Extract Ducts
- Tested on both vertical and horizontal ducts
- Wide ranging scope for many duct types
- High quality black foil finish
- Patented horizontal penetration detail

Applications

DuctRock® Slab has been designed for use with rectangular and square steel ductwork systems and has been fire tested in conjunction with the following duct types shown in table 1.

Table 1

<table>
<thead>
<tr>
<th>Duct Type</th>
<th>Ventilation Duct: Type A</th>
<th>Ventilation Duct: Type B</th>
<th>Smoke Extract Duct: Type C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Horizontal</td>
<td>Vertical</td>
<td>Horizontal</td>
</tr>
<tr>
<td></td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>

Performance

Fire performance

FIREPRO® DuctRock® Slab can achieve fire resistance ratings; Integrity (E) and Insulation (I) of EI 30 to EI 120 with only 3 thicknesses. Table 2 provides a summary of fire performance.

Table 2

<table>
<thead>
<tr>
<th>FIREPRO® DuctRock® Slab (mm)</th>
<th>Ventilation Duct: Type A</th>
<th>Ventilation Duct: Type B</th>
<th>Smoke Extract Duct: Type C</th>
<th>Ducts with a Combustible Lining</th>
</tr>
</thead>
<tbody>
<tr>
<td>*60</td>
<td>EI 60</td>
<td>EI 60</td>
<td>EI 60</td>
<td>N/A</td>
</tr>
<tr>
<td>80</td>
<td>EI 90</td>
<td>EI 90</td>
<td>EI 90</td>
<td>N/A</td>
</tr>
<tr>
<td>90</td>
<td>EI 120</td>
<td>EI 120</td>
<td>EI 120</td>
<td>EI 60</td>
</tr>
</tbody>
</table>

*Use 60mm FIREPRO® DuctRock® Slab for EI 30 fire ratings

Technical information

Standards and approvals

DuctRock® Slab has been tested in accordance with BS EN 1366: Part 1 for ventilation ducts and also BS EN 1366: Part 8 for smoke extraction ducts achieving up to EI 120 minutes.

DuctRock® Slab has been classified in accordance with EN 13501-3:2005 +A1: 2009.

Fire Resistance Classification: up to EI 120 (ve, ho, i ↔ o) S

DuctRock® has been classified in accordance with EN 13501-4:2016.

Fire Resistance Classification: up to EI 120 multi (ho/ve) S 500

pH Neutrality

ROCKWOOL insulation is chemically compatible with all types of pipes, ducts, equipment and fittings. (Guidance is given in BS 5970 regarding the treatment of austenitic stainless-steel pipework and fittings). Stone wool insulation is chemically inert. A typical aqueous extract of ROCKWOOL insulation is neutral or slightly alkaline (pH 7 to 9.5).

Durability

ROCKWOOL stone wool insulation products have been proven in service for over 60 years, in a wide range of climates and degrees of exposure. ROCKWOOL insulation will generally perform effectively for the lifetime of the building, plant or structure.

Biological

ROCKWOOL stone wool is a naturally inert and rot-proof material that does not encourage or support the growth of fungi, moulds or bacteria, or offer sustenance to insects or vermin.
Installation

Fire performance
FIREPRO® Ductrock® Slab can be rapidly installed onto rectangular and square steel ductwork using a combination of Ø2.7 - Ø3.0mm stud welded pins, Ø30mm steel washers and ROCKWOOL FIREPRO® Glue. All board abutments and cross joints must be covered with ROCKWOOL black aluminium foil tape.

<table>
<thead>
<tr>
<th>DuctRock Slab thickness (mm)</th>
<th>Stud welded pin length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>62mm</td>
</tr>
<tr>
<td>80</td>
<td>82mm</td>
</tr>
<tr>
<td>90</td>
<td>92mm</td>
</tr>
</tbody>
</table>

FIREPRO® DuctRock® is easily cut with a hand saw or alternatively a circular/rotary saw. The top and bottom slabs should be cut 10mm wider than the width of the duct to ensure a tight cross joint with the side slabs. The side slabs should be cut to the height of the duct (H) + 2 x the insulation thickness as shown in Figure 1.

Top slab
When installed within horizontal applications the top boards do not require any stud welded pins and is simply positioned onto the duct with all board joints bonded with FIREPRO® Glue. Board joints must be covered using ROCKWOOL black foil tape.

Side wall slabs
The side wall slabs are installed using stud welded pins with 350mm maximum centres along the length of the duct and 400mm centres across the depth as shown in Figure 2.

Note: To ensure that there is a strong bond between the welded pin and the duct, always ensure that the welded pin is sufficiently isolated from the foil surface of the insulation during welding.
Base slab

Install the base slabs with stud welded pins at a maximum of 350mm centres along the length of the duct and 300mm centres across the width of horizontal ducts and 450mm across the width of vertical ducts as shown in Figures 5 and 6.

Detailing around flanges and drop rod hangers

Where the DuctRock® Slab bypasses a flange, drop rod hanger or both, cut a notch into the insulation as shown in Figure 7a-c. The insulation can easily be cut with a sharp knife or hand saw.

All board joints must be bonded with FIREPRO® Glue.
Dry wall penetration

In order to maintain fire performance, provide stability and minimise noise transfer, ROCKWOOL have developed a patented solution for installing DuctRock® Slab at the point where the duct penetrates a dry wall system.

Installation Procedure: Dry wall Penetration

1. A joint in the DuctRock® Slab must be accommodated at the centre point of the aperture, as shown in Figure 10.
2. Fill the remaining annular space between the DuctRock® Slab and supporting structure of the dry wall system with ROCKWOOL RWA445 as shown in Figure 9.
3. To stiffen the duct around the penetration a 1.5mm thick steel u-profile (60 x 25 mm) must be fitted approx. 20mm from the wall, to both the vertical and horizontal sides of the duct (both sides of the aperture) the length of the profile can be determined using the following formula: Duct Width/Height + (2 x Insulation Thickness) – 50mm. Examples shown in table below:

<table>
<thead>
<tr>
<th>Duct size</th>
<th>Insulation thickness</th>
<th>U-Profile Length (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1500 (L) x 1000 (W) x 500 (H)</td>
<td>90</td>
<td>1130 630</td>
</tr>
<tr>
<td>1500 (L) x 1000 (W) x 250 (H)</td>
<td>90</td>
<td>1130 380</td>
</tr>
</tbody>
</table>

4. Before applying the u-profile to the DuctRock® Slab slits must be cut into the insulation to allow the profile sides to penetrate the insulation (Figure 10). The u-profile can be attached to the ductwork using 100mm self-tapping screws. 4No to the top and bottom slabs and 2No to the vertical slabs.
5. Once the u-profiles have been applied an insulated collar must be installed around the perimeter of the aperture. The collar can be simply cut from the DuctRock® Slab. Fix the collars in place with FIREPRO® Glue as shown in Figure 9. Use nails to temporarily hold the collars in place whilst the glue cures.
6. ROCKWOOL Black foil tape can be used to cover any exposed edges of the collars.
Floor penetration

1. Maintain a 30mm gap between the ductwork and floor structure. Fill the gap between the duct and the floor structure with a ROCKWOOL Slab e.g. ROCKWOOL RWA45 as shown in Figure 11a. The flexible slab can be sealed within the void using FIREPRO® Glue.

2. Secure the duct to the floor structure using 4 no. 50 x 50 x 45 x 2.5mm galvanised steel angles to both sides of the aperture. The angles can be fixed using 2No 3.2 x 25mm self-tapping screws. Alternatively, the duct can be secured with a 40 x 40 x 3mm L profile as shown in Figure 11b. The length of the L profile should be equal to the width of the duct and installed to both sides (duct width).

3. Apply a DuctRock® collar to the perimeter of the aperture and on both sides as shown in Figure 11a. The collars can be fixed using FIREPRO® Glue and temporarily held in place with nails until the glue cures.

Elbows

Elbows can be protected by cutting the DuctRock® Slab into fan shaped segments as shown in Figure 12a. Alternatively v-shaped slits can be cut into the back of the DuctRock Slab allowing it to wrap around the elbow as shown in Figure 12b. Fill the v-shaped channels with FIREPRO® Glue before applying to the duct and use nails to temporarily hold the insulation in place whilst the glue cures.

Access hatches

DuctRock® Slab can be cut and positioned within a steel frame to form a removable cover in the location of the steel access hatch. The insulated cover can be attached to the duct using 4No M8 threaded rods (Figure 13a) ensuring the rods are secured on both sides of the duct. The cover is then fixed to the rods using steel M8 nuts and washers. The thickness of insulation should be appropriate to the fire resistance required.
Fire protection: Section 2 - Building services

Specification clauses

Typical specification clauses for rectangular and square ducts to be read in conjunction with the installation guidelines provided within this datasheet.

All ductwork is to be insulated with……* mm ROCKWOOL FIREPRO® DuctRock® Slab, having a factory applied reinforced black aluminium foil to one face and tested in accordance with BS EN 1366: Part 1 and/or BS EN 1366:Part 8.

DuctRock® Slab is to be fixed to the duct using 2.7 - 3.0 mm diameter welded steel pins and 30 mm spring steel washers in accordance with the ROCKWOOL Product Data Sheet “FIREPRO® DuctRock®”.

Any duct joints are to be filled with FIREPRO® Glue and held tightly closed.

Installed to steel ductwork which complies with the following specification criteria:

- Steel duct dimensions up to 1000x1250 (height x width) and 1500mm in length
- With leakage class B in accordance with EN 1507. Further information on leakage classes can also be found in DW/144: Specification for Sheet Metal Ductwork low, medium and high pressure/velocity air systems.
- With an under-pressure or over-pressure up to 500Pa
- Steel flanges to be spot welded to the duct:
 - Ventilation Duct - 20mm flange
 - Smoke Extract Duct - 30mm flange

Flanges to be held together with either a 20mm flange joint profile (duct types A & B) or 30mm flange joint profile (duct type C). All flange joints to be sealed with sealing grease.

With stiffeners as follows:

- EI 120 – Ventilation Duct: 1 x Ø 15mm steel pipe in each duct segment
- EI 120 – Smoke Extract Duct: 2 x Ø 15mm steel pipe in each duct segment

Sealed with and appropriate duct sealant and 5 x 15mm EPDM tape

The duct suspension system complies with the following specification criteria:

Horizontal ducts:

<table>
<thead>
<tr>
<th>Fire resistance</th>
<th>Max tensile stress of suspension device</th>
<th>Max shearing stress of screws</th>
<th>Max distance from suspension device to duct joint</th>
</tr>
</thead>
<tbody>
<tr>
<td>EI 30</td>
<td>9 N/mm²</td>
<td>15 N/mm²</td>
<td>150mm</td>
</tr>
<tr>
<td>EI 60</td>
<td>9 N/mm²</td>
<td>15 N/mm²</td>
<td>150mm</td>
</tr>
<tr>
<td>EI 90</td>
<td>6 N/mm²</td>
<td>10 N/mm²</td>
<td>150mm</td>
</tr>
<tr>
<td>EI 120</td>
<td>6 N/mm²</td>
<td>10 N/mm²</td>
<td>150mm</td>
</tr>
<tr>
<td>EI 120 (Smoke Extract)</td>
<td>6 N/mm²</td>
<td>10 N/mm²</td>
<td>150mm</td>
</tr>
</tbody>
</table>

- With distance between suspension devices not exceeding 1500mm
- The lateral distance between the outer vertical surface of the steel duct and the centre line of the suspension rod shall not exceed 50mm

Vertical Ducts:

- With distance between supporting structures not exceeding 5m

Any duct penetrations comply with the following specification criteria:

Horizontal:

- Penetrating in rigid wall constructions or flexible walls with a minimum thickness of:
 - EI 30 – 70mm
 - EI 60 – 95mm
 - EI 90 – 95mm
 - EI 120 – 130mm
- And with a fire resistance equal to or greater than the tested DuctRock® slab thickness.
- For horizontal penetrations, the gap between the DuctRock® Slab and supporting structure will not exceed 20mm.
- For horizontal penetrations U-profiles 1.5mm thick, with dimensions 60 x 25mm must be installed approximately 20mm from the wall and on both sides of the wall. The legs of the u-profiles are lowered into slits cut into DuctRock® Slab and fixed to the duct by means of:
 - Ø 4.8mm x 100mm for EI 30 & EI 120 self-tapping screws; 4 on the top and bottom profiles and 2 on the vertical profiles.

Vertical:

- Penetrating rigid floor constructions with a minimum thickness of:
 - EI 30 – 100mm
 - EI 60 – 100mm
 - EI 90 – 150mm
 - EI 120 – 150mm
- And with a fire resistance equal to or greater than the tested DuctRock® slab thickness.
- For vertical penetrations the duct is to be stabilised using 4 no. ‘L’ galvanised steel angles of 50 x 50 x 45 x 2.5mm or a 40 x 40 x 3mm L profile which are fixed to the vertical steel duct and the supporting structure on both sides of the floor.

NBS specification clauses

FIREPRO® DuctRock® Slab is associated with the following NBS specification clauses:

U90 General ventilation - domestic

- 490 Site applied insulation to ductwork

Y30 Mechanical thermal insulation

- 340 Mineral fibre slabs insulation
Fire protection: Section 2 - Building services

FIREPRO® Fire Tube

Description
FIREPRO® Fire Tube is a preformed cylindrical section which is manufactured using high density ROCKWOOL stone wool. Fire Tube is available in both plain and foil faced options. Fire Tube is available to suit common steel structural column and pipe diameters in the range between 21mm - 610mm and is supplied in lengths of 1000mm.

Standard wall thicknesses*: 25, 40, 50, 60 and 70mm (excludes 610 diameter

Advantages
- Available in a range of wall thicknesses to accommodate specific fail temperatures
- Manufactured to accommodate pipes and CHS sizes up to 610mm Ø
- Up to 4 hours fire resistance
- Excellent thermal and acoustic insulation
- A1 Non-combustible
- Water repellent

Applications
Fire Tube has been designed to provide fire protection of up to 4 hours and is suitable for use with:
- Structural steel
- Circular Hollow Sections (CHS)
- Solid bars
- Sprinkler pipes
- Process pipework

Performance
Fire performance
Fire report CC 276856A details the expected fire resistance performance relating to critical steel temperatures of 50, 100, 150, 200, 250, 300, 350, 400 and 550°C for periods of up to 4 hours.

The required wall thickness of Fire Tube to provide a particular fire resistance for a specified period depends on the diameter, wall thickness and critical (fail) temperature of the steel column or pipe. However, in the case of pipes, the critical temperature is likely to depend on its contents.

Structural steel fire protection
The section factors A/V (Hp/A) for standard structural steel sections can be found in the ASFP Yellow Book or can be calculated for each element by dividing the perimeter (circumference) exposed to fire (A) by the cross sectional area (V). For circular sections (including pipes), the following, simplified formulae can be used to calculate the A/V section factors:
- Solid sections: A/V = 4 / OD
- Hollow sections: A/V = OD / (thk (OD - thk))
- Where OD = outside diameter in m
- Where thk = wall thickness in m

Worked example for hollow section
- Outside diameter: 219.1mm (0.2191m)
- Wall thickness: 8.0mm (0.008m)
- Circumference (A): 0.6884m
- Cross sectional area (V): 0.00531m²
- Section factor (A/V): 130m⁻¹

Tables 1 and 2 provide the wall thickness of Fire Tube necessary to restrict the core design temperature of circular steel elements (based on their limiting section factors) to 400°C and 550°C respectively, during exposure to cellulosic fire test. The design temperature is defined as the mean temperature at which a beam or column is assumed to be capable of supporting a specified load. Similar tables for critical temperatures of 50°C, 100°C, 150°C, 200°C, 250°C, 300°C and 350°C are also available from the ROCKWOOL Technical Solutions Team.

* Other wall thicknesses may be available subject to quantity or can be accommodated on site by dual layering one tube over another.
Pipework fire protection

The critical failure temperature of a pipe will depend on the material it is made of, or its contents e.g. water or oil. Table 3 provides the minimum required wall thickness of Fire Tube for a variety of critical failure temperatures to provide 60 minutes fire resistance to a 219.1mm OD steel pipe with an 8mm wall thickness - Section factor (A/V) of 130m⁻¹.

Table 3: Critical steel temp 550°C (for load-bearing structural building frameworks)

<table>
<thead>
<tr>
<th>Critical temperature of pipe material or contents</th>
<th>Wall thickness of Fire Tube (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100°C</td>
<td>100</td>
</tr>
<tr>
<td>150°C</td>
<td>75</td>
</tr>
<tr>
<td>200°C</td>
<td>60</td>
</tr>
<tr>
<td>250°C</td>
<td>50</td>
</tr>
<tr>
<td>300°C</td>
<td>50</td>
</tr>
<tr>
<td>350°C</td>
<td>40</td>
</tr>
<tr>
<td>400°C</td>
<td>30</td>
</tr>
<tr>
<td>550°C</td>
<td>25</td>
</tr>
</tbody>
</table>

Technical information

Standards and approvals

Fire Tube conforms to BS 3958: Part 4, 'Bonded preformed mineral wool pipe sections'. Full-scale independent test data has been verified and assessed by BRE Global in Fire report number: CC 276856A. The fire performance of Fire Tube has been reviewed by the Fire Test Study Group for inclusion in the ASFP Yellow Book, endorsed by the Steel Construction Institute.

This product has been authorised for use in LUL surface and sub-surface premises when installed in accordance with this datasheet - please refer to the LUL Approved Product Register website www.LUL-apr.co.uk for specific details.

Product information

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length</td>
<td>1000mm</td>
</tr>
<tr>
<td>Internal diameter range</td>
<td>21 – 610mm</td>
</tr>
<tr>
<td>Thickness range</td>
<td>25 – 100mm</td>
</tr>
<tr>
<td>Reaction to fire classification</td>
<td>Euroclass A1</td>
</tr>
<tr>
<td>Fire resistance</td>
<td>Up to 4 hours</td>
</tr>
</tbody>
</table>

Installation

FIREPRO® Fire Tube is light and easy to cut to shape using a saw or a sharp knife. Abutted sectional joints/ tube ends of the Fire Tube (including the partially split 'hinge' and the tube ends) are to be applied with FIREPRO® Glue prior to application. All joints should be held firmly together with temporary bands of steel wire, jubilee clips or plastic cable ties at 200mm centres until adhesive within joints and between Tube ends has fully cured.

If installed outdoors, Fire Tube must be protected from the weather. Prior to use, Fire Tube should be stored indoors or protected by a weather proof covering.

Specification clauses

FIREPRO® Fire Tube is associated with the following NBS clauses:

P12 Fire stopping systems

• 375 Pipe collar: Insulated wrap
ROCKWOOL®
Firestopping Principles

1. ROCKWOOL will not support mixing fire protection of differing manufacturers systems/products of any type in line with ASFP recommendations, unless proven by fire testing.

2. ROCKWOOL products should be installed in accordance with the relevant product data sheet and within the field of application identified on the standard details. For applications that fall outside the parameters identified in the standard details or data sheets please contact ROCKWOOL for further guidance.

3. Engineering Judgements are an appraisal of the likely performance of the installed ROCKWOOL products in that application when subjected to a fire resistance test. It is offered in lieu of direct formal testing and is based upon ROCKWOOL’s experience of product performance during fire resistance testing. For this reason, before installation engineering judgements used on site should be reviewed and accepted by Building Control and/or the scheme Fire Office or the overseeing body for the project.

4. All penetrations within the dry lining system shall be framed and lined. A pattress fit option with ROCKWOOL Batts is available, but please check for its suitability.

5. Design of the penetration and its fire stopping should consider and correspond to the Integrity and Insulation requirements of the host wall or floor, unless leniency on the insulation rating is provided by the Fire Officer or overseeing body via a derogation.

6. Services of different types can pass through the same penetration, with the exception of ventilation (ducts and dampers) which should pass through exclusively through its own penetration, as per the EN test guidance.

7. Fire dampers and smoke dampers are to be independently supported from the soffit, therefore care should be taken where other services pass above the ventilation penetrations. Please refer to the damper manufacturer’s details and specification.

8. Support for services passing through walls should be within 500mm on each side. Services passing through floors should be supported at each level, as per industry and ASFP Guidance.

To access our range of firestopping standard details and penetration spacing guidelines, visit: www.rockwool.co.uk/firepro
Sustainability
When it comes to our approach to sustainability, it is, simply put, a matter of living our purpose to address the challenges of modern living in a sustainable manner.

This means using natural materials to make products that have a positive impact on society.

Health and safety
The safety of ROCKWOOL stone wool is confirmed by current UK and Republic of Ireland health & safety regulations and EU directive 97/69/EC: ROCKWOOL fibres are not classified as a possible human carcinogen.

A Material Safety Data Sheet is available and can be downloaded from www.rockwool.co.uk to assist in the preparation of risk assessments, as required by the Control of Substances Hazardous to Health Regulations (COSHH).

Environment
Made from a renewable and plentiful naturally occurring resource, ROCKWOOL insulation saves fuel costs and energy in use and relies on trapped air for its thermal properties.

ROCKWOOL insulation does not contain (and has never contained) gases that have ozone depletion potential (ODP) or global warming potential (GWP).

ROCKWOOL is approximately 97% recyclable. For waste ROCKWOOL material that may be generated during installation or at end of life, we are happy to discuss the individual requirements of contractors and users considering returning these materials to our factory for recycling.

Legal disclaimer
The ROCKWOOL Trademark
ROCKWOOL® - our trademark

The ROCKWOOL trademark was initially registered in Denmark as a logo mark back in 1936. In 1937, it was accompanied with a word mark registration; a registration which is now extended to more than 60 countries around the world.

The ROCKWOOL trademark is one of the largest assets in the ROCKWOOL Group, and thus well protected and defended by us throughout the world.

If you require permission to use the ROCKWOOL logo for your business, advertising or promotion. You must apply for a Trade Mark Usage Agreement.

To apply, write to: marketcom@rockwool.com.

Trademarks
The following are registered trademarks of the ROCKWOOL Group: ROCKWOOL®, ROCKCLOSE®, RAINSCREEN DUO SLAB®, HAIRDROCK®, ROCKFLOOR® FLEX®, BEAMCLAD®, FIREPRO®

Disclaimer
ROCKWOOL Limited reserves the right to alter or amend the specification of products without notice as our policy is one of constant improvement. The information contained in this brochure is believed to be correct at the date of publication.

Whilst ROCKWOOL will endeavour to keep its publications up to date, readers will appreciate that between publications there may be pertinent changes in the law, or other developments affecting the accuracy of the information contained in this brochure. The applications referred to within the brochure do not necessarily represent an exhaustive list of applications.

ROCKWOOL Limited does not accept responsibility for the consequences of using ROCKWOOL in applications different from those described within this brochure. Expert advice should be sought where such different applications are contemplated, or where the extent of any listed application is in doubt.

© ROCKWOOL 2020. All rights reserved.

Photography and illustrations
The product illustrations are the property of ROCKWOOL ltd and have been created for indicative purposes only.

Unless indicated below, the photography and illustrations used in this guide are the property of ROCKWOOL Limited. We reserve all rights to the usage of these images.

If you require permission to use ROCKWOOL images, you must apply for a Usage Agreement.

To apply, write to: marketcom@rockwool.com.

Interested?
For further information, contact the Technical Solutions Team on 01656 868490 or email technical.solutions@rockwool.co.uk

Visit www.rockwool.co.uk to view our complete range of products and services.

© ROCKWOOL August 2020